1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
34 | [Item("MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator", "Calculates the mean squared error and the number of variables of a symbolic regression solution.")]
|
---|
35 | [StorableClass]
|
---|
36 | public class MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator : MultiObjectiveSymbolicRegressionEvaluator {
|
---|
37 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
38 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
39 |
|
---|
40 | #region parameter properties
|
---|
41 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
42 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
43 | }
|
---|
44 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
45 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
46 | }
|
---|
47 | #endregion
|
---|
48 | #region properties
|
---|
49 | public DoubleValue UpperEstimationLimit {
|
---|
50 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
51 | }
|
---|
52 | public DoubleValue LowerEstimationLimit {
|
---|
53 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
54 | }
|
---|
55 | #endregion
|
---|
56 | public MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator()
|
---|
57 | : base() {
|
---|
58 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
59 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
60 | }
|
---|
61 |
|
---|
62 | protected override double[] Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, StringValue targetVariable, IEnumerable<int> rows) {
|
---|
63 | double mse = SymbolicRegressionMeanSquaredErrorEvaluator.Calculate(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable.Value, rows);
|
---|
64 | List<string> vars = new List<string>();
|
---|
65 | solution.Root.ForEachNodePostfix(n => {
|
---|
66 | var varNode = n as VariableTreeNode;
|
---|
67 | if (varNode != null && !vars.Contains(varNode.VariableName)) {
|
---|
68 | vars.Add(varNode.VariableName);
|
---|
69 | }
|
---|
70 | });
|
---|
71 | return new double[2] { mse, vars.Count };
|
---|
72 | }
|
---|
73 | }
|
---|
74 | }
|
---|