1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using System;
|
---|
34 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
37 | public class SymbolicRegressionTournamentPruning : SingleSuccessorOperator, ISymbolicRegressionAnalyzer {
|
---|
38 | private const string RandomParameterName = "Random";
|
---|
39 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
40 | private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
|
---|
41 | private const string SamplesStartParameterName = "SamplesStart";
|
---|
42 | private const string SamplesEndParameterName = "SamplesEnd";
|
---|
43 | private const string EvaluatorParameterName = "Evaluator";
|
---|
44 | private const string MaximizationParameterName = "Maximization";
|
---|
45 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
46 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
47 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
48 | private const string MaxPruningRatioParameterName = "MaxPruningRatio";
|
---|
49 | private const string TournamentSizeParameterName = "TournamentSize";
|
---|
50 | private const string PopulationPercentileStartParameterName = "PopulationPercentileStart";
|
---|
51 | private const string PopulationPercentileEndParameterName = "PopulationPercentileEnd";
|
---|
52 | private const string QualityGainWeightParameterName = "QualityGainWeight";
|
---|
53 | private const string IterationsParameterName = "Iterations";
|
---|
54 | private const string FirstPruningGenerationParameterName = "FirstPruningGeneration";
|
---|
55 | private const string PruningFrequencyParameterName = "PruningFrequency";
|
---|
56 | private const string GenerationParameterName = "Generations";
|
---|
57 | private const string ResultsParameterName = "Results";
|
---|
58 |
|
---|
59 | #region parameter properties
|
---|
60 | public ILookupParameter<IRandom> RandomParameter {
|
---|
61 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
62 | }
|
---|
63 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
64 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
65 | }
|
---|
66 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
67 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
68 | }
|
---|
69 | public ILookupParameter<DataAnalysisProblemData> DataAnalysisProblemDataParameter {
|
---|
70 | get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[DataAnalysisProblemDataParameterName]; }
|
---|
71 | }
|
---|
72 | public ILookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
73 | get { return (ILookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
74 | }
|
---|
75 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
76 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
77 | }
|
---|
78 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
79 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
80 | }
|
---|
81 | public IValueLookupParameter<IntValue> SamplesStartParameter {
|
---|
82 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
|
---|
83 | }
|
---|
84 | public IValueLookupParameter<IntValue> SamplesEndParameter {
|
---|
85 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
|
---|
86 | }
|
---|
87 | public IValueLookupParameter<PercentValue> RelativeNumberOfEvaluatedRowsParameters {
|
---|
88 | get { return (IValueLookupParameter<PercentValue>)Parameters["RelativeNumberOfEvaluatedRows"]; }
|
---|
89 | }
|
---|
90 | public ILookupParameter<ISymbolicRegressionEvaluator> EvaluatorParameter {
|
---|
91 | get { return (ILookupParameter<ISymbolicRegressionEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
92 | }
|
---|
93 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
94 | get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
|
---|
95 | }
|
---|
96 | public IValueLookupParameter<DoubleValue> MaxPruningRatioParameter {
|
---|
97 | get { return (IValueLookupParameter<DoubleValue>)Parameters[MaxPruningRatioParameterName]; }
|
---|
98 | }
|
---|
99 | public IValueLookupParameter<IntValue> TournamentSizeParameter {
|
---|
100 | get { return (IValueLookupParameter<IntValue>)Parameters[TournamentSizeParameterName]; }
|
---|
101 | }
|
---|
102 | public IValueLookupParameter<DoubleValue> PopulationPercentileStartParameter {
|
---|
103 | get { return (IValueLookupParameter<DoubleValue>)Parameters[PopulationPercentileStartParameterName]; }
|
---|
104 | }
|
---|
105 | public IValueLookupParameter<DoubleValue> PopulationPercentileEndParameter {
|
---|
106 | get { return (IValueLookupParameter<DoubleValue>)Parameters[PopulationPercentileEndParameterName]; }
|
---|
107 | }
|
---|
108 | public IValueLookupParameter<DoubleValue> QualityGainWeightParameter {
|
---|
109 | get { return (IValueLookupParameter<DoubleValue>)Parameters[QualityGainWeightParameterName]; }
|
---|
110 | }
|
---|
111 | public IValueLookupParameter<IntValue> IterationsParameter {
|
---|
112 | get { return (IValueLookupParameter<IntValue>)Parameters[IterationsParameterName]; }
|
---|
113 | }
|
---|
114 | public IValueLookupParameter<IntValue> FirstPruningGenerationParameter {
|
---|
115 | get { return (IValueLookupParameter<IntValue>)Parameters[FirstPruningGenerationParameterName]; }
|
---|
116 | }
|
---|
117 | public IValueLookupParameter<IntValue> PruningFrequencyParameter {
|
---|
118 | get { return (IValueLookupParameter<IntValue>)Parameters[PruningFrequencyParameterName]; }
|
---|
119 | }
|
---|
120 | public ILookupParameter<IntValue> GenerationParameter {
|
---|
121 | get { return (ILookupParameter<IntValue>)Parameters[GenerationParameterName]; }
|
---|
122 | }
|
---|
123 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
124 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
125 | }
|
---|
126 | public IValueLookupParameter<BoolValue> ApplyPruningParameter {
|
---|
127 | get { return (IValueLookupParameter<BoolValue>)Parameters["ApplyPruning"]; }
|
---|
128 | }
|
---|
129 | public IValueLookupParameter<IntValue> MinimalTreeSizeParameter {
|
---|
130 | get { return (IValueLookupParameter<IntValue>)Parameters["MinimalTreeSize"]; }
|
---|
131 | }
|
---|
132 | #endregion
|
---|
133 | #region properties
|
---|
134 | public IRandom Random {
|
---|
135 | get { return RandomParameter.ActualValue; }
|
---|
136 | }
|
---|
137 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
138 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
139 | }
|
---|
140 | public DataAnalysisProblemData DataAnalysisProblemData {
|
---|
141 | get { return DataAnalysisProblemDataParameter.ActualValue; }
|
---|
142 | }
|
---|
143 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
144 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
145 | }
|
---|
146 | public DoubleValue UpperEstimationLimit {
|
---|
147 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
148 | }
|
---|
149 | public DoubleValue LowerEstimationLimit {
|
---|
150 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
151 | }
|
---|
152 | public IntValue SamplesStart {
|
---|
153 | get { return SamplesStartParameter.ActualValue; }
|
---|
154 | }
|
---|
155 | public IntValue SamplesEnd {
|
---|
156 | get { return SamplesEndParameter.ActualValue; }
|
---|
157 | }
|
---|
158 | public ISymbolicRegressionEvaluator Evaluator {
|
---|
159 | get { return EvaluatorParameter.ActualValue; }
|
---|
160 | }
|
---|
161 | public BoolValue Maximization {
|
---|
162 | get { return MaximizationParameter.ActualValue; }
|
---|
163 | }
|
---|
164 | public DoubleValue MaxPruningRatio {
|
---|
165 | get { return MaxPruningRatioParameter.ActualValue; }
|
---|
166 | }
|
---|
167 | public IntValue TournamentSize {
|
---|
168 | get { return TournamentSizeParameter.ActualValue; }
|
---|
169 | }
|
---|
170 | public DoubleValue PopulationPercentileStart {
|
---|
171 | get { return PopulationPercentileStartParameter.ActualValue; }
|
---|
172 | }
|
---|
173 | public DoubleValue PopulationPercentileEnd {
|
---|
174 | get { return PopulationPercentileEndParameter.ActualValue; }
|
---|
175 | }
|
---|
176 | public DoubleValue QualityGainWeight {
|
---|
177 | get { return QualityGainWeightParameter.ActualValue; }
|
---|
178 | }
|
---|
179 | public IntValue Iterations {
|
---|
180 | get { return IterationsParameter.ActualValue; }
|
---|
181 | }
|
---|
182 | public IntValue PruningFrequency {
|
---|
183 | get { return PruningFrequencyParameter.ActualValue; }
|
---|
184 | }
|
---|
185 | public IntValue FirstPruningGeneration {
|
---|
186 | get { return FirstPruningGenerationParameter.ActualValue; }
|
---|
187 | }
|
---|
188 | public IntValue Generation {
|
---|
189 | get { return GenerationParameter.ActualValue; }
|
---|
190 | }
|
---|
191 | #endregion
|
---|
192 | [StorableConstructor]
|
---|
193 | protected SymbolicRegressionTournamentPruning(bool deserializing) : base(deserializing) { }
|
---|
194 | public SymbolicRegressionTournamentPruning()
|
---|
195 | : base() {
|
---|
196 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "A random number generator."));
|
---|
197 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to prune."));
|
---|
198 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality"));
|
---|
199 | Parameters.Add(new LookupParameter<DataAnalysisProblemData>(DataAnalysisProblemDataParameterName, "The data analysis problem data to use for branch impact evaluation."));
|
---|
200 | Parameters.Add(new LookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter to use for node impact evaluation"));
|
---|
201 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The first row index of the dataset partition to use for branch impact evaluation."));
|
---|
202 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The last row index of the dataset partition to use for branch impact evaluation."));
|
---|
203 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>(EvaluatorParameterName, "The evaluator that should be used to determine which branches are not relevant."));
|
---|
204 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
205 | Parameters.Add(new ValueLookupParameter<BoolValue>("ApplyPruning"));
|
---|
206 | Parameters.Add(new ValueLookupParameter<DoubleValue>(MaxPruningRatioParameterName, "The maximal relative size of the pruned branch.", new DoubleValue(0.5)));
|
---|
207 | Parameters.Add(new ValueLookupParameter<IntValue>(TournamentSizeParameterName, "The number of branches to compare for pruning", new IntValue(10)));
|
---|
208 | Parameters.Add(new ValueLookupParameter<DoubleValue>(PopulationPercentileStartParameterName, "The start of the population percentile to consider for pruning.", new DoubleValue(0.25)));
|
---|
209 | Parameters.Add(new ValueLookupParameter<DoubleValue>(PopulationPercentileEndParameterName, "The end of the population percentile to consider for pruning.", new DoubleValue(0.75)));
|
---|
210 | Parameters.Add(new ValueLookupParameter<DoubleValue>(QualityGainWeightParameterName, "The weight of the quality gain relative to the size gain.", new DoubleValue(1.0)));
|
---|
211 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit to use for evaluation."));
|
---|
212 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit to use for evaluation."));
|
---|
213 | Parameters.Add(new ValueLookupParameter<IntValue>(IterationsParameterName, "The number of pruning iterations to apply for each tree.", new IntValue(1)));
|
---|
214 | Parameters.Add(new ValueLookupParameter<IntValue>(FirstPruningGenerationParameterName, "The first generation when pruning should be applied.", new IntValue(1)));
|
---|
215 | Parameters.Add(new ValueLookupParameter<IntValue>(PruningFrequencyParameterName, "The frequency of pruning operations (1: every generation, 2: every second generation...)", new IntValue(1)));
|
---|
216 | Parameters.Add(new LookupParameter<IntValue>(GenerationParameterName, "The current generation."));
|
---|
217 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The results collection."));
|
---|
218 | Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeNumberOfEvaluatedRows", new PercentValue(1.0)));
|
---|
219 | Parameters.Add(new ValueLookupParameter<IntValue>("MinimalTreeSize", new IntValue(15)));
|
---|
220 | }
|
---|
221 |
|
---|
222 | [StorableHook(HookType.AfterDeserialization)]
|
---|
223 | private void AfterDeserialization() {
|
---|
224 | #region compatibility remove before releasing 3.3.1
|
---|
225 | if (!Parameters.ContainsKey(EvaluatorParameterName)) {
|
---|
226 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
227 | }
|
---|
228 | if (!Parameters.ContainsKey(MaximizationParameterName)) {
|
---|
229 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
230 | }
|
---|
231 | if (!Parameters.ContainsKey("ApplyPruning")) {
|
---|
232 | Parameters.Add(new ValueLookupParameter<BoolValue>("ApplyPruning"));
|
---|
233 | }
|
---|
234 | if (!Parameters.ContainsKey("Quality")) {
|
---|
235 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality"));
|
---|
236 | }
|
---|
237 | if (!Parameters.ContainsKey("RelativeNumberOfEvaluatedRows")) {
|
---|
238 | Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeNumberOfEvaluatedRows", new PercentValue(1.0)));
|
---|
239 | }
|
---|
240 | if (!Parameters.ContainsKey("MinimalTreeSize")) {
|
---|
241 | Parameters.Add(new ValueLookupParameter<IntValue>("MinimalTreeSize", new IntValue(15)));
|
---|
242 | }
|
---|
243 |
|
---|
244 | #endregion
|
---|
245 | }
|
---|
246 |
|
---|
247 | public override IOperation Apply() {
|
---|
248 | bool pruningCondition =
|
---|
249 | (ApplyPruningParameter.ActualValue.Value) &&
|
---|
250 | (Generation.Value >= FirstPruningGeneration.Value) &&
|
---|
251 | ((Generation.Value - FirstPruningGeneration.Value) % PruningFrequency.Value == 0);
|
---|
252 | if (pruningCondition) {
|
---|
253 | int n = SymbolicExpressionTree.Length;
|
---|
254 | double percentileStart = PopulationPercentileStart.Value;
|
---|
255 | double percentileEnd = PopulationPercentileEnd.Value;
|
---|
256 | // for each tree in the given percentile
|
---|
257 | ItemArray<SymbolicExpressionTree> trees = SymbolicExpressionTree;
|
---|
258 | ItemArray<DoubleValue> quality = QualityParameter.ActualValue;
|
---|
259 | bool maximization = Maximization.Value;
|
---|
260 | var selectedTrees = (from index in Enumerable.Range(0, n)
|
---|
261 | orderby maximization ? -quality[index].Value : quality[index].Value
|
---|
262 | select new { Tree = trees[index], Quality = quality[index] })
|
---|
263 | .Skip((int)(n * percentileStart))
|
---|
264 | .Take((int)(n * (percentileEnd - percentileStart)));
|
---|
265 | foreach (var pair in selectedTrees) {
|
---|
266 | Prune(Random, pair.Tree, pair.Quality, Iterations.Value, TournamentSize.Value,
|
---|
267 | DataAnalysisProblemData, SamplesStart.Value, SamplesEnd.Value, RelativeNumberOfEvaluatedRowsParameters.ActualValue.Value,
|
---|
268 | SymbolicExpressionTreeInterpreter, Evaluator, Maximization.Value,
|
---|
269 | LowerEstimationLimit.Value, UpperEstimationLimit.Value,
|
---|
270 | MinimalTreeSizeParameter.ActualValue.Value, MaxPruningRatio.Value, QualityGainWeight.Value);
|
---|
271 | }
|
---|
272 | }
|
---|
273 | return base.Apply();
|
---|
274 | }
|
---|
275 |
|
---|
276 | public static void Prune(IRandom random, SymbolicExpressionTree tree, DoubleValue quality, int iterations, int tournamentSize,
|
---|
277 | DataAnalysisProblemData problemData, int samplesStart, int samplesEnd, double relativeNumberOfEvaluatedRows,
|
---|
278 | ISymbolicExpressionTreeInterpreter interpreter, ISymbolicRegressionEvaluator evaluator, bool maximization,
|
---|
279 | double lowerEstimationLimit, double upperEstimationLimit,
|
---|
280 | int minTreeSize, double maxPruningRatio, double qualityGainWeight) {
|
---|
281 |
|
---|
282 |
|
---|
283 | int originalSize = tree.Size;
|
---|
284 | // min size of the resulting pruned tree
|
---|
285 | int minPrunedSize = (int)(originalSize * (1 - maxPruningRatio));
|
---|
286 | minPrunedSize = Math.Max(minPrunedSize, minTreeSize);
|
---|
287 |
|
---|
288 | // use the same subset of rows for all iterations and for all pruning tournaments
|
---|
289 | IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(samplesStart, samplesEnd, (int)Math.Ceiling((samplesEnd - samplesStart) * relativeNumberOfEvaluatedRows));
|
---|
290 | SymbolicExpressionTree prunedTree = tree;
|
---|
291 | for (int iteration = 0; iteration < iterations; iteration++) {
|
---|
292 | // maximally prune a branch such that the resulting tree size is not smaller than (1-maxPruningRatio) of the original tree
|
---|
293 | int maxPrunedBranchSize = tree.Size - minPrunedSize;
|
---|
294 | if (maxPrunedBranchSize > 0) {
|
---|
295 | PruneTournament(prunedTree, quality, random, tournamentSize, maxPrunedBranchSize, maximization, qualityGainWeight, evaluator, interpreter, problemData.Dataset, problemData.TargetVariable.Value, rows, lowerEstimationLimit, upperEstimationLimit);
|
---|
296 | }
|
---|
297 | }
|
---|
298 | }
|
---|
299 |
|
---|
300 | private class PruningPoint {
|
---|
301 | public SymbolicExpressionTreeNode Parent { get; private set; }
|
---|
302 | public SymbolicExpressionTreeNode Branch { get; private set; }
|
---|
303 | public int SubTreeIndex { get; private set; }
|
---|
304 | public PruningPoint(SymbolicExpressionTreeNode parent, SymbolicExpressionTreeNode branch, int index) {
|
---|
305 | Parent = parent;
|
---|
306 | Branch = branch;
|
---|
307 | SubTreeIndex = index;
|
---|
308 | }
|
---|
309 | }
|
---|
310 |
|
---|
311 | private static void PruneTournament(SymbolicExpressionTree tree, DoubleValue quality, IRandom random, int tournamentSize,
|
---|
312 | int maxPrunedBranchSize, bool maximization, double qualityGainWeight, ISymbolicRegressionEvaluator evaluator, ISymbolicExpressionTreeInterpreter interpreter,
|
---|
313 | Dataset ds, string targetVariable, IEnumerable<int> rows, double lowerEstimationLimit, double upperEstimationLimit) {
|
---|
314 | // make a clone for pruningEvaluation
|
---|
315 | SymbolicExpressionTree pruningEvaluationTree = (SymbolicExpressionTree)tree.Clone();
|
---|
316 | var prunePoints = (from node in pruningEvaluationTree.Root.SubTrees[0].IterateNodesPostfix()
|
---|
317 | from subTree in node.SubTrees
|
---|
318 | let subTreeSize = subTree.GetSize()
|
---|
319 | where subTreeSize <= maxPrunedBranchSize
|
---|
320 | where !(subTree.Symbol is Constant)
|
---|
321 | select new PruningPoint(node, subTree, node.SubTrees.IndexOf(subTree)))
|
---|
322 | .ToList();
|
---|
323 | double originalQuality = quality.Value;
|
---|
324 | double originalSize = tree.Size;
|
---|
325 | if (prunePoints.Count > 0) {
|
---|
326 | double bestCoeff = double.PositiveInfinity;
|
---|
327 | List<PruningPoint> tournamentGroup;
|
---|
328 | if (prunePoints.Count > tournamentSize) {
|
---|
329 | tournamentGroup = new List<PruningPoint>();
|
---|
330 | for (int i = 0; i < tournamentSize; i++) {
|
---|
331 | tournamentGroup.Add(prunePoints.SelectRandom(random));
|
---|
332 | }
|
---|
333 | } else {
|
---|
334 | tournamentGroup = prunePoints;
|
---|
335 | }
|
---|
336 | foreach (PruningPoint prunePoint in tournamentGroup) {
|
---|
337 | double replacementValue = CalculateReplacementValue(prunePoint.Branch, interpreter, ds, rows);
|
---|
338 |
|
---|
339 | // temporarily replace the branch with a constant
|
---|
340 | prunePoint.Parent.RemoveSubTree(prunePoint.SubTreeIndex);
|
---|
341 | var constNode = CreateConstant(replacementValue);
|
---|
342 | prunePoint.Parent.InsertSubTree(prunePoint.SubTreeIndex, constNode);
|
---|
343 |
|
---|
344 | // evaluate the pruned tree
|
---|
345 | double prunedQuality = evaluator.Evaluate(interpreter, pruningEvaluationTree,
|
---|
346 | lowerEstimationLimit, upperEstimationLimit, ds, targetVariable, rows);
|
---|
347 |
|
---|
348 | double prunedSize = originalSize - prunePoint.Branch.GetSize() + 1;
|
---|
349 |
|
---|
350 | double coeff = CalculatePruningCoefficient(maximization, qualityGainWeight, originalQuality, originalSize, prunedQuality, prunedSize);
|
---|
351 | if (coeff < bestCoeff) {
|
---|
352 | bestCoeff = coeff;
|
---|
353 | // clone the currently pruned tree
|
---|
354 | SymbolicExpressionTree bestTree = (SymbolicExpressionTree)pruningEvaluationTree.Clone();
|
---|
355 |
|
---|
356 | // and update original tree and quality
|
---|
357 | tree.Root = bestTree.Root;
|
---|
358 | quality.Value = prunedQuality;
|
---|
359 | }
|
---|
360 |
|
---|
361 | // restore tree that is used for pruning evaluation
|
---|
362 | prunePoint.Parent.RemoveSubTree(prunePoint.SubTreeIndex);
|
---|
363 | prunePoint.Parent.InsertSubTree(prunePoint.SubTreeIndex, prunePoint.Branch);
|
---|
364 | }
|
---|
365 | }
|
---|
366 | }
|
---|
367 |
|
---|
368 | private static double CalculatePruningCoefficient(bool maximization, double qualityGainWeight, double originalQuality, double originalSize, double prunedQuality, double prunedSize) {
|
---|
369 | // deteriation in quality:
|
---|
370 | // exp: MSE : newMse < origMse (improvement) => prefer the larger improvement
|
---|
371 | // MSE : newMse > origMse (deteriation) => prefer the smaller deteriation
|
---|
372 | // MSE : minimize: newMse / origMse
|
---|
373 | // R² : newR² > origR² (improvment) => prefer the larger improvment
|
---|
374 | // R² : newR² < origR² (deteriation) => prefer smaller deteriation
|
---|
375 | // R² : minimize: origR² / newR²
|
---|
376 | double qualityDeteriation = maximization ? originalQuality / prunedQuality : prunedQuality / originalQuality;
|
---|
377 | // size of the pruned tree is always smaller than the size of the original tree
|
---|
378 | // same change in quality => prefer pruning operation that removes a larger tree
|
---|
379 | return (qualityDeteriation * qualityGainWeight) / (originalSize / prunedSize);
|
---|
380 | }
|
---|
381 |
|
---|
382 | private static double CalculateReplacementValue(SymbolicExpressionTreeNode branch, ISymbolicExpressionTreeInterpreter interpreter, Dataset ds, IEnumerable<int> rows) {
|
---|
383 | SymbolicExpressionTreeNode start = (new StartSymbol()).CreateTreeNode();
|
---|
384 | start.AddSubTree(branch);
|
---|
385 | SymbolicExpressionTreeNode root = (new ProgramRootSymbol()).CreateTreeNode();
|
---|
386 | root.AddSubTree(start);
|
---|
387 | SymbolicExpressionTree tree = new SymbolicExpressionTree(root);
|
---|
388 | IEnumerable<double> branchValues = interpreter.GetSymbolicExpressionTreeValues(tree, ds, rows);
|
---|
389 | return branchValues.Average();
|
---|
390 | }
|
---|
391 |
|
---|
392 | private static SymbolicExpressionTreeNode CreateConstant(double constantValue) {
|
---|
393 | var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
394 | node.Value = constantValue;
|
---|
395 | return node;
|
---|
396 | }
|
---|
397 | }
|
---|
398 | }
|
---|