Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/SymbolicRegressionModelQualityCalculator.cs @ 12467

Last change on this file since 12467 was 5275, checked in by gkronber, 14 years ago

Merged changes from trunk to data analysis exploration branch and added fractional distance metric evaluator. #1142

File size: 9.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Operators;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Problems.DataAnalysis.Evaluators;
31using HeuristicLab.Problems.DataAnalysis.Symbolic;
32
33namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
34  /// <summary>
35  /// "An operator to calculate the quality values of a symbolic regression solution symbolic expression tree encoding."
36  /// </summary>
37  [Item("SymbolicRegressionModelQualityCalculator", "An operator to calculate the quality values of a symbolic regression solution symbolic expression tree encoding.")]
38  [StorableClass]
39  [Obsolete("This class should not be used anymore because of performance reasons and will therefore not be updated.")]
40  public sealed class SymbolicRegressionModelQualityCalculator : AlgorithmOperator {
41    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
42    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
43    private const string ProblemDataParameterName = "ProblemData";
44    private const string ValuesParameterName = "Values";
45    private const string RSQuaredQualityParameterName = "R-squared";
46    private const string MeanSquaredErrorQualityParameterName = "Mean Squared Error";
47    private const string RelativeErrorQualityParameterName = "Relative Error";
48    private const string SamplesStartParameterName = "SamplesStart";
49    private const string SamplesEndParameterName = "SamplesEnd";
50    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
51    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
52
53    #region parameter properties
54    public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
55      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
56    }
57    public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
58      get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
59    }
60    public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
61      get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
62    }
63    public IValueLookupParameter<IntValue> SamplesStartParameter {
64      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
65    }
66    public IValueLookupParameter<IntValue> SamplesEndParameter {
67      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
68    }
69    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
70      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
71    }
72    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
73      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
74    }
75    public ILookupParameter<DoubleValue> RSquaredQualityParameter {
76      get { return (ILookupParameter<DoubleValue>)Parameters[RSQuaredQualityParameterName]; }
77    }
78    public ILookupParameter<DoubleValue> AverageRelativeErrorQualityParameter {
79      get { return (ILookupParameter<DoubleValue>)Parameters[RelativeErrorQualityParameterName]; }
80    }
81    public ILookupParameter<DoubleValue> MeanSquaredErrorQualityParameter {
82      get { return (ILookupParameter<DoubleValue>)Parameters[MeanSquaredErrorQualityParameterName]; }
83    }
84    #endregion
85
86    [StorableConstructor]
87    private SymbolicRegressionModelQualityCalculator(bool deserializing) : base(deserializing) { }
88    private SymbolicRegressionModelQualityCalculator(SymbolicRegressionModelQualityCalculator original, Cloner cloner) : base(original, cloner) { }
89    public SymbolicRegressionModelQualityCalculator()
90      : base() {
91      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression tree to analyze."));
92      Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic expression tree."));
93      Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data containing the input varaibles for the symbolic regression problem."));
94      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The first index of the data set partition on which the model quality values should be calculated."));
95      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The first index of the data set partition on which the model quality values should be calculated."));
96      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
97      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
98      Parameters.Add(new ValueParameter<DoubleMatrix>(ValuesParameterName, "The matrix of original target values and estimated values of the model."));
99      Parameters.Add(new ValueLookupParameter<DoubleValue>(MeanSquaredErrorQualityParameterName, "The mean squared error value of the output of the model."));
100      Parameters.Add(new ValueLookupParameter<DoubleValue>(RSQuaredQualityParameterName, "The R² correlation coefficient of the output of the model and the original target values."));
101      Parameters.Add(new ValueLookupParameter<DoubleValue>(RelativeErrorQualityParameterName, "The average relative percentage error of the output of the model."));
102
103      #region operator initialization
104      SimpleSymbolicRegressionEvaluator simpleEvaluator = new SimpleSymbolicRegressionEvaluator();
105      SimpleRSquaredEvaluator simpleR2Evalator = new SimpleRSquaredEvaluator();
106      SimpleMeanAbsolutePercentageErrorEvaluator simpleRelErrorEvaluator = new SimpleMeanAbsolutePercentageErrorEvaluator();
107      SimpleMSEEvaluator simpleMseEvaluator = new SimpleMSEEvaluator();
108      Assigner clearValues = new Assigner();
109      #endregion
110
111      #region parameter wiring
112      simpleEvaluator.SymbolicExpressionTreeParameter.ActualName = SymbolicExpressionTreeParameter.Name;
113      simpleEvaluator.RegressionProblemDataParameter.ActualName = ProblemDataParameter.Name;
114      simpleEvaluator.SamplesStartParameter.ActualName = SamplesStartParameter.Name;
115      simpleEvaluator.SamplesEndParameter.ActualName = SamplesEndParameter.Name;
116      simpleEvaluator.LowerEstimationLimitParameter.ActualName = LowerEstimationLimitParameter.Name;
117      simpleEvaluator.UpperEstimationLimitParameter.ActualName = UpperEstimationLimitParameter.Name;
118      simpleEvaluator.SymbolicExpressionTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
119      simpleEvaluator.ValuesParameter.ActualName = ValuesParameterName;
120
121      simpleR2Evalator.ValuesParameter.ActualName = ValuesParameterName;
122      simpleR2Evalator.RSquaredParameter.ActualName = RSquaredQualityParameter.Name;
123
124      simpleMseEvaluator.ValuesParameter.ActualName = ValuesParameterName;
125      simpleMseEvaluator.MeanSquaredErrorParameter.ActualName = MeanSquaredErrorQualityParameter.Name;
126
127      simpleRelErrorEvaluator.ValuesParameter.ActualName = ValuesParameterName;
128      simpleRelErrorEvaluator.AverageRelativeErrorParameter.ActualName = AverageRelativeErrorQualityParameter.Name;
129
130      clearValues.LeftSideParameter.ActualName = ValuesParameterName;
131      clearValues.RightSideParameter.Value = new DoubleMatrix();
132      #endregion
133
134      #region operator graph
135      OperatorGraph.InitialOperator = simpleEvaluator;
136      simpleEvaluator.Successor = simpleR2Evalator;
137      simpleR2Evalator.Successor = simpleRelErrorEvaluator;
138      simpleRelErrorEvaluator.Successor = simpleMseEvaluator;
139      simpleMseEvaluator.Successor = clearValues;
140      clearValues.Successor = null;
141      #endregion
142
143    }
144    public override IDeepCloneable Clone(Cloner cloner) {
145      return new SymbolicRegressionModelQualityCalculator(this, cloner);
146    }
147  }
148}
Note: See TracBrowser for help on using the repository browser.