1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
35 | using System;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
38 | [Item("OverfittingAnalyzer", "")]
|
---|
39 | [StorableClass]
|
---|
40 | public sealed class OverfittingAnalyzer : SingleSuccessorOperator, ISymbolicRegressionAnalyzer {
|
---|
41 | private const string RandomParameterName = "Random";
|
---|
42 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
43 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
44 | private const string ProblemDataParameterName = "ProblemData";
|
---|
45 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
46 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
47 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
48 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
49 | private const string EvaluatorParameterName = "Evaluator";
|
---|
50 | private const string MaximizationParameterName = "Maximization";
|
---|
51 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
52 |
|
---|
53 | #region parameter properties
|
---|
54 | public ILookupParameter<IRandom> RandomParameter {
|
---|
55 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
56 | }
|
---|
57 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
58 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
59 | }
|
---|
60 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
61 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
62 | }
|
---|
63 | public ScopeTreeLookupParameter<DoubleValue> ValidationQualityParameter {
|
---|
64 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["ValidationQuality"]; }
|
---|
65 | }
|
---|
66 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
67 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
68 | }
|
---|
69 | public ILookupParameter<ISymbolicRegressionEvaluator> EvaluatorParameter {
|
---|
70 | get { return (ILookupParameter<ISymbolicRegressionEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
71 | }
|
---|
72 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
73 | get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
|
---|
74 | }
|
---|
75 | public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
|
---|
76 | get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
77 | }
|
---|
78 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
79 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
80 | }
|
---|
81 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
82 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
83 | }
|
---|
84 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
85 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
86 | }
|
---|
87 |
|
---|
88 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
89 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
90 | }
|
---|
91 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
92 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
93 | }
|
---|
94 | public ILookupParameter<PercentValue> RelativeValidationQualityParameter {
|
---|
95 | get { return (ILookupParameter<PercentValue>)Parameters["RelativeValidationQuality"]; }
|
---|
96 | }
|
---|
97 | //public IValueLookupParameter<PercentValue> RelativeValidationQualityLowerLimitParameter {
|
---|
98 | // get { return (IValueLookupParameter<PercentValue>)Parameters["RelativeValidationQualityLowerLimit"]; }
|
---|
99 | //}
|
---|
100 | //public IValueLookupParameter<PercentValue> RelativeValidationQualityUpperLimitParameter {
|
---|
101 | // get { return (IValueLookupParameter<PercentValue>)Parameters["RelativeValidationQualityUpperLimit"]; }
|
---|
102 | //}
|
---|
103 | public ILookupParameter<DoubleValue> TrainingValidationQualityCorrelationParameter {
|
---|
104 | get { return (ILookupParameter<DoubleValue>)Parameters["TrainingValidationCorrelation"]; }
|
---|
105 | }
|
---|
106 | public IValueLookupParameter<DoubleValue> LowerCorrelationLimitParameter {
|
---|
107 | get { return (IValueLookupParameter<DoubleValue>)Parameters["LowerCorrelationLimit"]; }
|
---|
108 | }
|
---|
109 | public IValueLookupParameter<DoubleValue> UpperCorrelationLimitParameter {
|
---|
110 | get { return (IValueLookupParameter<DoubleValue>)Parameters["UpperCorrelationLimit"]; }
|
---|
111 | }
|
---|
112 | public ILookupParameter<BoolValue> OverfittingParameter {
|
---|
113 | get { return (ILookupParameter<BoolValue>)Parameters["Overfitting"]; }
|
---|
114 | }
|
---|
115 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
116 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
117 | }
|
---|
118 | public ILookupParameter<DoubleValue> InitialTrainingQualityParameter {
|
---|
119 | get { return (ILookupParameter<DoubleValue>)Parameters["InitialTrainingQuality"]; }
|
---|
120 | }
|
---|
121 | public ILookupParameter<DoubleMatrix> TrainingAndValidationQualitiesParameter {
|
---|
122 | get { return (ILookupParameter<DoubleMatrix>)Parameters["TrainingAndValidationQualities"]; }
|
---|
123 | }
|
---|
124 | public IValueLookupParameter<DoubleValue> PercentileParameter {
|
---|
125 | get { return (IValueLookupParameter<DoubleValue>)Parameters["Percentile"]; }
|
---|
126 | }
|
---|
127 | #endregion
|
---|
128 | #region properties
|
---|
129 | public IRandom Random {
|
---|
130 | get { return RandomParameter.ActualValue; }
|
---|
131 | }
|
---|
132 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
133 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
134 | }
|
---|
135 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
136 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
137 | }
|
---|
138 | public ISymbolicRegressionEvaluator Evaluator {
|
---|
139 | get { return EvaluatorParameter.ActualValue; }
|
---|
140 | }
|
---|
141 | public BoolValue Maximization {
|
---|
142 | get { return MaximizationParameter.ActualValue; }
|
---|
143 | }
|
---|
144 | public DataAnalysisProblemData ProblemData {
|
---|
145 | get { return ProblemDataParameter.ActualValue; }
|
---|
146 | }
|
---|
147 | public IntValue ValidiationSamplesStart {
|
---|
148 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
149 | }
|
---|
150 | public IntValue ValidationSamplesEnd {
|
---|
151 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
152 | }
|
---|
153 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
154 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
155 | }
|
---|
156 |
|
---|
157 | public DoubleValue UpperEstimationLimit {
|
---|
158 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
159 | }
|
---|
160 | public DoubleValue LowerEstimationLimit {
|
---|
161 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
162 | }
|
---|
163 | #endregion
|
---|
164 |
|
---|
165 | public OverfittingAnalyzer()
|
---|
166 | : base() {
|
---|
167 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
|
---|
168 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
169 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
170 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality"));
|
---|
171 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("ValidationQuality"));
|
---|
172 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
173 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
174 | Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
175 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
176 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
177 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
178 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
179 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
180 | Parameters.Add(new LookupParameter<PercentValue>("RelativeValidationQuality"));
|
---|
181 | //Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeValidationQualityUpperLimit", new PercentValue(0.05)));
|
---|
182 | //Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeValidationQualityLowerLimit", new PercentValue(-0.05)));
|
---|
183 | Parameters.Add(new LookupParameter<DoubleValue>("TrainingValidationCorrelation"));
|
---|
184 | Parameters.Add(new ValueLookupParameter<DoubleValue>("LowerCorrelationLimit", new DoubleValue(0.65)));
|
---|
185 | Parameters.Add(new ValueLookupParameter<DoubleValue>("UpperCorrelationLimit", new DoubleValue(0.75)));
|
---|
186 | Parameters.Add(new LookupParameter<BoolValue>("Overfitting"));
|
---|
187 | Parameters.Add(new LookupParameter<ResultCollection>("Results"));
|
---|
188 | Parameters.Add(new LookupParameter<DoubleValue>("InitialTrainingQuality"));
|
---|
189 | Parameters.Add(new LookupParameter<DoubleMatrix>("TrainingAndValidationQualities"));
|
---|
190 | Parameters.Add(new ValueLookupParameter<DoubleValue>("Percentile", new DoubleValue(1)));
|
---|
191 |
|
---|
192 | }
|
---|
193 |
|
---|
194 | [StorableConstructor]
|
---|
195 | private OverfittingAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
196 |
|
---|
197 | [StorableHook(HookType.AfterDeserialization)]
|
---|
198 | private void AfterDeserialization() {
|
---|
199 | if (!Parameters.ContainsKey("InitialTrainingQuality")) {
|
---|
200 | Parameters.Add(new LookupParameter<DoubleValue>("InitialTrainingQuality"));
|
---|
201 | }
|
---|
202 | //if (!Parameters.ContainsKey("RelativeValidationQualityUpperLimit")) {
|
---|
203 | // Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeValidationQualityUpperLimit", new PercentValue(0.05)));
|
---|
204 | //}
|
---|
205 | //if (!Parameters.ContainsKey("RelativeValidationQualityLowerLimit")) {
|
---|
206 | // Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeValidationQualityLowerLimit", new PercentValue(-0.05)));
|
---|
207 | //}
|
---|
208 | if (!Parameters.ContainsKey("TrainingAndValidationQualities")) {
|
---|
209 | Parameters.Add(new LookupParameter<DoubleMatrix>("TrainingAndValidationQualities"));
|
---|
210 | }
|
---|
211 | if (!Parameters.ContainsKey("Percentile")) {
|
---|
212 | Parameters.Add(new ValueLookupParameter<DoubleValue>("Percentile", new DoubleValue(1)));
|
---|
213 | }
|
---|
214 | if (!Parameters.ContainsKey("ValidationQuality")) {
|
---|
215 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("ValidationQuality"));
|
---|
216 | }
|
---|
217 | if (!Parameters.ContainsKey("LowerCorrelationLimit")) {
|
---|
218 | Parameters.Add(new ValueLookupParameter<DoubleValue>("LowerCorrelationLimit", new DoubleValue(0.65)));
|
---|
219 | }
|
---|
220 | if (!Parameters.ContainsKey("UpperCorrelationLimit")) {
|
---|
221 | Parameters.Add(new ValueLookupParameter<DoubleValue>("UpperCorrelationLimit", new DoubleValue(0.75)));
|
---|
222 | }
|
---|
223 |
|
---|
224 | }
|
---|
225 |
|
---|
226 | public override IOperation Apply() {
|
---|
227 | var trees = SymbolicExpressionTree;
|
---|
228 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
229 | ItemArray<DoubleValue> validationQualities = ValidationQualityParameter.ActualValue;
|
---|
230 |
|
---|
231 | double correlationLimit;
|
---|
232 | if (OverfittingParameter.ActualValue != null && OverfittingParameter.ActualValue.Value) {
|
---|
233 | // if is already overfitting have to reach the upper limit to switch back to non-overfitting state
|
---|
234 | correlationLimit = UpperCorrelationLimitParameter.ActualValue.Value;
|
---|
235 | } else {
|
---|
236 | // if currently in non-overfitting state have to reach to lower limit to switch to overfitting state
|
---|
237 | correlationLimit = LowerCorrelationLimitParameter.ActualValue.Value;
|
---|
238 | }
|
---|
239 | //string targetVariable = ProblemData.TargetVariable.Value;
|
---|
240 |
|
---|
241 | //// select a random subset of rows in the validation set
|
---|
242 | //int validationStart = ValidiationSamplesStart.Value;
|
---|
243 | //int validationEnd = ValidationSamplesEnd.Value;
|
---|
244 | //int seed = Random.Next();
|
---|
245 | //int count = (int)((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
246 | //if (count == 0) count = 1;
|
---|
247 | //IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count);
|
---|
248 |
|
---|
249 | //double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
250 | //double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
251 |
|
---|
252 | //double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
|
---|
253 | //SymbolicExpressionTree bestTree = null;
|
---|
254 |
|
---|
255 | //List<double> validationQualities = new List<double>();
|
---|
256 | //foreach (var tree in trees) {
|
---|
257 | // double quality = Evaluator.Evaluate(SymbolicExpressionTreeInterpreter, tree,
|
---|
258 | // lowerEstimationLimit, upperEstimationLimit,
|
---|
259 | // ProblemData.Dataset, targetVariable,
|
---|
260 | // rows);
|
---|
261 | // validationQualities.Add(quality);
|
---|
262 | // //if ((Maximization.Value && quality > bestQuality) ||
|
---|
263 | // // (!Maximization.Value && quality < bestQuality)) {
|
---|
264 | // // bestQuality = quality;
|
---|
265 | // // bestTree = tree;
|
---|
266 | // //}
|
---|
267 | //}
|
---|
268 |
|
---|
269 | //if (RelativeValidationQualityParameter.ActualValue == null) {
|
---|
270 | // first call initialize the relative quality using the difference between average training and validation quality
|
---|
271 | double avgTrainingQuality = qualities.Select(x => x.Value).Average();
|
---|
272 | double avgValidationQuality = validationQualities.Select(x => x.Value).Average();
|
---|
273 |
|
---|
274 | if (Maximization.Value)
|
---|
275 | RelativeValidationQualityParameter.ActualValue = new PercentValue(avgValidationQuality / avgTrainingQuality - 1);
|
---|
276 | else {
|
---|
277 | RelativeValidationQualityParameter.ActualValue = new PercentValue(avgTrainingQuality / avgValidationQuality - 1);
|
---|
278 | }
|
---|
279 | //}
|
---|
280 |
|
---|
281 | // best first (only for maximization
|
---|
282 | var orderedDistinctPairs = (from index in Enumerable.Range(0, qualities.Length)
|
---|
283 | where qualities[index].Value > 0.0
|
---|
284 | select new { Training = qualities[index].Value, Validation = validationQualities[index].Value })
|
---|
285 | .OrderBy(x => -x.Training)
|
---|
286 | .ToList();
|
---|
287 |
|
---|
288 | int n = (int)Math.Round(PercentileParameter.ActualValue.Value * orderedDistinctPairs.Count);
|
---|
289 |
|
---|
290 | double[] validationArr = new double[n];
|
---|
291 | double[] trainingArr = new double[n];
|
---|
292 | //double[,] qualitiesArr = new double[n, 2];
|
---|
293 | for (int i = 0; i < n; i++) {
|
---|
294 | validationArr[i] = orderedDistinctPairs[i].Validation;
|
---|
295 | trainingArr[i] = orderedDistinctPairs[i].Training;
|
---|
296 |
|
---|
297 | //qualitiesArr[i, 0] = trainingArr[i];
|
---|
298 | //qualitiesArr[i, 1] = validationArr[i];
|
---|
299 | }
|
---|
300 | double r = alglib.correlation.spearmanrankcorrelation(trainingArr, validationArr, n);
|
---|
301 | TrainingValidationQualityCorrelationParameter.ActualValue = new DoubleValue(r);
|
---|
302 | if (InitialTrainingQualityParameter.ActualValue == null)
|
---|
303 | InitialTrainingQualityParameter.ActualValue = new DoubleValue(avgValidationQuality);
|
---|
304 | bool overfitting =
|
---|
305 | avgTrainingQuality > InitialTrainingQualityParameter.ActualValue.Value && // better on training than in initial generation
|
---|
306 | // RelativeValidationQualityParameter.ActualValue.Value < 0.0 && // validation quality is worse than training quality
|
---|
307 | r < correlationLimit;
|
---|
308 |
|
---|
309 |
|
---|
310 | OverfittingParameter.ActualValue = new BoolValue(overfitting);
|
---|
311 | //TrainingAndValidationQualitiesParameter.ActualValue = new DoubleMatrix(qualitiesArr);
|
---|
312 | return base.Apply();
|
---|
313 | }
|
---|
314 |
|
---|
315 | [StorableHook(HookType.AfterDeserialization)]
|
---|
316 | private void Initialize() { }
|
---|
317 |
|
---|
318 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
319 | DataRow row;
|
---|
320 | table.Rows.TryGetValue(name, out row);
|
---|
321 | if (row == null) {
|
---|
322 | row = new DataRow(name, description);
|
---|
323 | row.Values.Add(data);
|
---|
324 | table.Rows.Add(row);
|
---|
325 | } else {
|
---|
326 | row.Values.Add(data);
|
---|
327 | }
|
---|
328 | }
|
---|
329 | }
|
---|
330 | }
|
---|