[4271] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Analysis;
|
---|
[4272] | 25 | using HeuristicLab.Common;
|
---|
[4271] | 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Operators;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
| 34 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 35 | using System;
|
---|
| 36 |
|
---|
| 37 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
| 38 | [Item("OverfittingAnalyzer", "")]
|
---|
| 39 | [StorableClass]
|
---|
| 40 | public sealed class OverfittingAnalyzer : SingleSuccessorOperator, ISymbolicRegressionAnalyzer {
|
---|
| 41 | private const string RandomParameterName = "Random";
|
---|
| 42 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
| 43 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
| 44 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 45 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
| 46 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
| 47 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
| 48 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
| 49 | private const string EvaluatorParameterName = "Evaluator";
|
---|
| 50 | private const string MaximizationParameterName = "Maximization";
|
---|
| 51 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
| 52 |
|
---|
| 53 | #region parameter properties
|
---|
| 54 | public ILookupParameter<IRandom> RandomParameter {
|
---|
| 55 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
| 56 | }
|
---|
| 57 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
| 58 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
| 59 | }
|
---|
| 60 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
| 61 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 62 | }
|
---|
[4297] | 63 | public ScopeTreeLookupParameter<DoubleValue> ValidationQualityParameter {
|
---|
| 64 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["ValidationQuality"]; }
|
---|
| 65 | }
|
---|
[4271] | 66 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
| 67 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
| 68 | }
|
---|
| 69 | public ILookupParameter<ISymbolicRegressionEvaluator> EvaluatorParameter {
|
---|
| 70 | get { return (ILookupParameter<ISymbolicRegressionEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
| 71 | }
|
---|
| 72 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
| 73 | get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
|
---|
| 74 | }
|
---|
| 75 | public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
|
---|
| 76 | get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 77 | }
|
---|
| 78 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
| 79 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
| 80 | }
|
---|
| 81 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
| 82 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
| 83 | }
|
---|
| 84 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
| 85 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
| 89 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
| 90 | }
|
---|
| 91 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
| 92 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
| 93 | }
|
---|
| 94 | public ILookupParameter<PercentValue> RelativeValidationQualityParameter {
|
---|
| 95 | get { return (ILookupParameter<PercentValue>)Parameters["RelativeValidationQuality"]; }
|
---|
| 96 | }
|
---|
[4272] | 97 | //public IValueLookupParameter<PercentValue> RelativeValidationQualityLowerLimitParameter {
|
---|
| 98 | // get { return (IValueLookupParameter<PercentValue>)Parameters["RelativeValidationQualityLowerLimit"]; }
|
---|
| 99 | //}
|
---|
| 100 | //public IValueLookupParameter<PercentValue> RelativeValidationQualityUpperLimitParameter {
|
---|
| 101 | // get { return (IValueLookupParameter<PercentValue>)Parameters["RelativeValidationQualityUpperLimit"]; }
|
---|
| 102 | //}
|
---|
[4271] | 103 | public ILookupParameter<DoubleValue> TrainingValidationQualityCorrelationParameter {
|
---|
| 104 | get { return (ILookupParameter<DoubleValue>)Parameters["TrainingValidationCorrelation"]; }
|
---|
| 105 | }
|
---|
[4326] | 106 | public IValueLookupParameter<DoubleValue> LowerCorrelationLimitParameter {
|
---|
| 107 | get { return (IValueLookupParameter<DoubleValue>)Parameters["LowerCorrelationLimit"]; }
|
---|
[4271] | 108 | }
|
---|
[4326] | 109 | public IValueLookupParameter<DoubleValue> UpperCorrelationLimitParameter {
|
---|
| 110 | get { return (IValueLookupParameter<DoubleValue>)Parameters["UpperCorrelationLimit"]; }
|
---|
| 111 | }
|
---|
[4271] | 112 | public ILookupParameter<BoolValue> OverfittingParameter {
|
---|
| 113 | get { return (ILookupParameter<BoolValue>)Parameters["Overfitting"]; }
|
---|
| 114 | }
|
---|
| 115 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
| 116 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
| 117 | }
|
---|
[4272] | 118 | public ILookupParameter<DoubleValue> InitialTrainingQualityParameter {
|
---|
| 119 | get { return (ILookupParameter<DoubleValue>)Parameters["InitialTrainingQuality"]; }
|
---|
| 120 | }
|
---|
[5010] | 121 | public ILookupParameter<ItemList<DoubleMatrix>> TrainingAndValidationQualitiesParameter {
|
---|
| 122 | get { return (ILookupParameter<ItemList<DoubleMatrix>>)Parameters["TrainingAndValidationQualities"]; }
|
---|
[4275] | 123 | }
|
---|
| 124 | public IValueLookupParameter<DoubleValue> PercentileParameter {
|
---|
| 125 | get { return (IValueLookupParameter<DoubleValue>)Parameters["Percentile"]; }
|
---|
| 126 | }
|
---|
[4271] | 127 | #endregion
|
---|
| 128 | #region properties
|
---|
| 129 | public IRandom Random {
|
---|
| 130 | get { return RandomParameter.ActualValue; }
|
---|
| 131 | }
|
---|
| 132 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
| 133 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
| 134 | }
|
---|
| 135 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
| 136 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
| 137 | }
|
---|
| 138 | public ISymbolicRegressionEvaluator Evaluator {
|
---|
| 139 | get { return EvaluatorParameter.ActualValue; }
|
---|
| 140 | }
|
---|
| 141 | public BoolValue Maximization {
|
---|
| 142 | get { return MaximizationParameter.ActualValue; }
|
---|
| 143 | }
|
---|
| 144 | public DataAnalysisProblemData ProblemData {
|
---|
| 145 | get { return ProblemDataParameter.ActualValue; }
|
---|
| 146 | }
|
---|
| 147 | public IntValue ValidiationSamplesStart {
|
---|
| 148 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
| 149 | }
|
---|
| 150 | public IntValue ValidationSamplesEnd {
|
---|
| 151 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
| 152 | }
|
---|
| 153 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
| 154 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | public DoubleValue UpperEstimationLimit {
|
---|
| 158 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
| 159 | }
|
---|
| 160 | public DoubleValue LowerEstimationLimit {
|
---|
| 161 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
| 162 | }
|
---|
| 163 | #endregion
|
---|
| 164 |
|
---|
| 165 | public OverfittingAnalyzer()
|
---|
| 166 | : base() {
|
---|
| 167 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
|
---|
| 168 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
| 169 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
| 170 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality"));
|
---|
[4297] | 171 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("ValidationQuality"));
|
---|
[4271] | 172 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
| 173 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
| 174 | Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
| 175 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
| 176 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
| 177 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
| 178 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
| 179 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
| 180 | Parameters.Add(new LookupParameter<PercentValue>("RelativeValidationQuality"));
|
---|
[4272] | 181 | //Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeValidationQualityUpperLimit", new PercentValue(0.05)));
|
---|
| 182 | //Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeValidationQualityLowerLimit", new PercentValue(-0.05)));
|
---|
[4271] | 183 | Parameters.Add(new LookupParameter<DoubleValue>("TrainingValidationCorrelation"));
|
---|
[4326] | 184 | Parameters.Add(new ValueLookupParameter<DoubleValue>("LowerCorrelationLimit", new DoubleValue(0.65)));
|
---|
| 185 | Parameters.Add(new ValueLookupParameter<DoubleValue>("UpperCorrelationLimit", new DoubleValue(0.75)));
|
---|
[4271] | 186 | Parameters.Add(new LookupParameter<BoolValue>("Overfitting"));
|
---|
| 187 | Parameters.Add(new LookupParameter<ResultCollection>("Results"));
|
---|
[4272] | 188 | Parameters.Add(new LookupParameter<DoubleValue>("InitialTrainingQuality"));
|
---|
[5010] | 189 | Parameters.Add(new LookupParameter<ItemList<DoubleMatrix>>("TrainingAndValidationQualities"));
|
---|
[4297] | 190 | Parameters.Add(new ValueLookupParameter<DoubleValue>("Percentile", new DoubleValue(1)));
|
---|
[4275] | 191 |
|
---|
[4271] | 192 | }
|
---|
| 193 |
|
---|
| 194 | [StorableConstructor]
|
---|
| 195 | private OverfittingAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 196 |
|
---|
| 197 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 198 | private void AfterDeserialization() {
|
---|
[4272] | 199 | if (!Parameters.ContainsKey("InitialTrainingQuality")) {
|
---|
| 200 | Parameters.Add(new LookupParameter<DoubleValue>("InitialTrainingQuality"));
|
---|
| 201 | }
|
---|
| 202 | //if (!Parameters.ContainsKey("RelativeValidationQualityUpperLimit")) {
|
---|
| 203 | // Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeValidationQualityUpperLimit", new PercentValue(0.05)));
|
---|
| 204 | //}
|
---|
| 205 | //if (!Parameters.ContainsKey("RelativeValidationQualityLowerLimit")) {
|
---|
| 206 | // Parameters.Add(new ValueLookupParameter<PercentValue>("RelativeValidationQualityLowerLimit", new PercentValue(-0.05)));
|
---|
| 207 | //}
|
---|
[4275] | 208 | if (!Parameters.ContainsKey("TrainingAndValidationQualities")) {
|
---|
[5010] | 209 | Parameters.Add(new LookupParameter<ItemList<DoubleMatrix>>("TrainingAndValidationQualities"));
|
---|
[4275] | 210 | }
|
---|
| 211 | if (!Parameters.ContainsKey("Percentile")) {
|
---|
[4297] | 212 | Parameters.Add(new ValueLookupParameter<DoubleValue>("Percentile", new DoubleValue(1)));
|
---|
[4275] | 213 | }
|
---|
[4297] | 214 | if (!Parameters.ContainsKey("ValidationQuality")) {
|
---|
| 215 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("ValidationQuality"));
|
---|
| 216 | }
|
---|
[4326] | 217 | if (!Parameters.ContainsKey("LowerCorrelationLimit")) {
|
---|
| 218 | Parameters.Add(new ValueLookupParameter<DoubleValue>("LowerCorrelationLimit", new DoubleValue(0.65)));
|
---|
| 219 | }
|
---|
| 220 | if (!Parameters.ContainsKey("UpperCorrelationLimit")) {
|
---|
| 221 | Parameters.Add(new ValueLookupParameter<DoubleValue>("UpperCorrelationLimit", new DoubleValue(0.75)));
|
---|
| 222 | }
|
---|
| 223 |
|
---|
[4271] | 224 | }
|
---|
| 225 |
|
---|
| 226 | public override IOperation Apply() {
|
---|
| 227 | var trees = SymbolicExpressionTree;
|
---|
| 228 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
[4297] | 229 | ItemArray<DoubleValue> validationQualities = ValidationQualityParameter.ActualValue;
|
---|
[4271] | 230 |
|
---|
[4326] | 231 | double correlationLimit;
|
---|
| 232 | if (OverfittingParameter.ActualValue != null && OverfittingParameter.ActualValue.Value) {
|
---|
| 233 | // if is already overfitting have to reach the upper limit to switch back to non-overfitting state
|
---|
| 234 | correlationLimit = UpperCorrelationLimitParameter.ActualValue.Value;
|
---|
| 235 | } else {
|
---|
| 236 | // if currently in non-overfitting state have to reach to lower limit to switch to overfitting state
|
---|
| 237 | correlationLimit = LowerCorrelationLimitParameter.ActualValue.Value;
|
---|
| 238 | }
|
---|
[4309] | 239 | //string targetVariable = ProblemData.TargetVariable.Value;
|
---|
[4271] | 240 |
|
---|
[4309] | 241 | //// select a random subset of rows in the validation set
|
---|
| 242 | //int validationStart = ValidiationSamplesStart.Value;
|
---|
| 243 | //int validationEnd = ValidationSamplesEnd.Value;
|
---|
| 244 | //int seed = Random.Next();
|
---|
| 245 | //int count = (int)((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
| 246 | //if (count == 0) count = 1;
|
---|
| 247 | //IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count);
|
---|
[4271] | 248 |
|
---|
[4309] | 249 | //double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
| 250 | //double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
[4271] | 251 |
|
---|
| 252 | //double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
|
---|
| 253 | //SymbolicExpressionTree bestTree = null;
|
---|
| 254 |
|
---|
[4297] | 255 | //List<double> validationQualities = new List<double>();
|
---|
| 256 | //foreach (var tree in trees) {
|
---|
| 257 | // double quality = Evaluator.Evaluate(SymbolicExpressionTreeInterpreter, tree,
|
---|
| 258 | // lowerEstimationLimit, upperEstimationLimit,
|
---|
| 259 | // ProblemData.Dataset, targetVariable,
|
---|
| 260 | // rows);
|
---|
| 261 | // validationQualities.Add(quality);
|
---|
| 262 | // //if ((Maximization.Value && quality > bestQuality) ||
|
---|
| 263 | // // (!Maximization.Value && quality < bestQuality)) {
|
---|
| 264 | // // bestQuality = quality;
|
---|
| 265 | // // bestTree = tree;
|
---|
| 266 | // //}
|
---|
| 267 | //}
|
---|
[4271] | 268 |
|
---|
| 269 | //if (RelativeValidationQualityParameter.ActualValue == null) {
|
---|
| 270 | // first call initialize the relative quality using the difference between average training and validation quality
|
---|
[4309] | 271 | double avgTrainingQuality = qualities.Select(x => x.Value).Average();
|
---|
| 272 | double avgValidationQuality = validationQualities.Select(x => x.Value).Average();
|
---|
[4271] | 273 |
|
---|
| 274 | if (Maximization.Value)
|
---|
| 275 | RelativeValidationQualityParameter.ActualValue = new PercentValue(avgValidationQuality / avgTrainingQuality - 1);
|
---|
| 276 | else {
|
---|
| 277 | RelativeValidationQualityParameter.ActualValue = new PercentValue(avgTrainingQuality / avgValidationQuality - 1);
|
---|
| 278 | }
|
---|
| 279 | //}
|
---|
| 280 |
|
---|
[4275] | 281 | // best first (only for maximization
|
---|
| 282 | var orderedDistinctPairs = (from index in Enumerable.Range(0, qualities.Length)
|
---|
[4326] | 283 | where qualities[index].Value > 0.0
|
---|
[4297] | 284 | select new { Training = qualities[index].Value, Validation = validationQualities[index].Value })
|
---|
[4275] | 285 | .OrderBy(x => -x.Training)
|
---|
| 286 | .ToList();
|
---|
[4272] | 287 |
|
---|
[4275] | 288 | int n = (int)Math.Round(PercentileParameter.ActualValue.Value * orderedDistinctPairs.Count);
|
---|
| 289 |
|
---|
| 290 | double[] validationArr = new double[n];
|
---|
| 291 | double[] trainingArr = new double[n];
|
---|
[5010] | 292 | double[,] qualitiesArr = new double[n, 2];
|
---|
[4275] | 293 | for (int i = 0; i < n; i++) {
|
---|
| 294 | validationArr[i] = orderedDistinctPairs[i].Validation;
|
---|
| 295 | trainingArr[i] = orderedDistinctPairs[i].Training;
|
---|
| 296 |
|
---|
[5010] | 297 | qualitiesArr[i, 0] = trainingArr[i];
|
---|
| 298 | qualitiesArr[i, 1] = validationArr[i];
|
---|
[4272] | 299 | }
|
---|
[4275] | 300 | double r = alglib.correlation.spearmanrankcorrelation(trainingArr, validationArr, n);
|
---|
[4271] | 301 | TrainingValidationQualityCorrelationParameter.ActualValue = new DoubleValue(r);
|
---|
[4272] | 302 | if (InitialTrainingQualityParameter.ActualValue == null)
|
---|
| 303 | InitialTrainingQualityParameter.ActualValue = new DoubleValue(avgValidationQuality);
|
---|
| 304 | bool overfitting =
|
---|
| 305 | avgTrainingQuality > InitialTrainingQualityParameter.ActualValue.Value && // better on training than in initial generation
|
---|
[4309] | 306 | // RelativeValidationQualityParameter.ActualValue.Value < 0.0 && // validation quality is worse than training quality
|
---|
[4326] | 307 | r < correlationLimit;
|
---|
[4272] | 308 |
|
---|
| 309 |
|
---|
| 310 | OverfittingParameter.ActualValue = new BoolValue(overfitting);
|
---|
[5010] | 311 | ItemList<DoubleMatrix> list = TrainingAndValidationQualitiesParameter.ActualValue;
|
---|
| 312 | if (list == null) {
|
---|
| 313 | TrainingAndValidationQualitiesParameter.ActualValue = new ItemList<DoubleMatrix>();
|
---|
| 314 | }
|
---|
| 315 | TrainingAndValidationQualitiesParameter.ActualValue.Add(new DoubleMatrix(qualitiesArr));
|
---|
[4271] | 316 | return base.Apply();
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 320 | private void Initialize() { }
|
---|
| 321 |
|
---|
| 322 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
| 323 | DataRow row;
|
---|
| 324 | table.Rows.TryGetValue(name, out row);
|
---|
| 325 | if (row == null) {
|
---|
| 326 | row = new DataRow(name, description);
|
---|
| 327 | row.Values.Add(data);
|
---|
| 328 | table.Rows.Add(row);
|
---|
| 329 | } else {
|
---|
| 330 | row.Values.Add(data);
|
---|
| 331 | }
|
---|
| 332 | }
|
---|
| 333 | }
|
---|
| 334 | }
|
---|