Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/BestSymbolicRegressionSolutionAnalyzer.cs @ 10820

Last change on this file since 10820 was 5275, checked in by gkronber, 14 years ago

Merged changes from trunk to data analysis exploration branch and added fractional distance metric evaluator. #1142

File size: 8.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Analysis;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Optimization;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis.Symbolic;
32
33namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
34  [Item("BestSymbolicRegressionSolutionAnalyzer", "An operator for analyzing the best solution of symbolic regression problems given in symbolic expression tree encoding.")]
35  [StorableClass]
36  public sealed class BestSymbolicRegressionSolutionAnalyzer : RegressionSolutionAnalyzer, ISymbolicRegressionAnalyzer {
37    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
38    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
39    private const string BestSolutionInputvariableCountResultName = "Variables used by best solution";
40    private const string VariableFrequenciesParameterName = "VariableFrequencies";
41    private const string VariableImpactsResultName = "Integrated variable frequencies";
42    private const string BestSolutionParameterName = "BestSolution";
43
44    #region parameter properties
45    public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
46      get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
47    }
48    public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
49      get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
50    }
51    public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
52      get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
53    }
54    public ILookupParameter<DataTable> VariableFrequenciesParameter {
55      get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
56    }
57    #endregion
58    #region properties
59    public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
60      get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
61    }
62    public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
63      get { return SymbolicExpressionTreeParameter.ActualValue; }
64    }
65    public DataTable VariableFrequencies {
66      get { return VariableFrequenciesParameter.ActualValue; }
67    }
68    #endregion
69
70    [StorableConstructor]
71    private BestSymbolicRegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
72    private BestSymbolicRegressionSolutionAnalyzer(BestSymbolicRegressionSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
73    public BestSymbolicRegressionSolutionAnalyzer()
74      : base() {
75      Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
76      Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
77      Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
78      Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
79    }
80
81    public override IDeepCloneable Clone(Cloner cloner) {
82      return new BestSymbolicRegressionSolutionAnalyzer(this, cloner);
83    }
84
85    [StorableHook(HookType.AfterDeserialization)]
86    private void AfterDeserialization() {
87      if (!Parameters.ContainsKey(VariableFrequenciesParameterName)) {
88        Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
89      }
90    }
91
92    protected override DataAnalysisSolution UpdateBestSolution() {
93      double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
94      double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
95
96      int i = Quality.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index;
97
98      if (BestSolutionQualityParameter.ActualValue == null || BestSolutionQualityParameter.ActualValue.Value > Quality[i].Value) {
99        var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
100          SymbolicExpressionTree[i]);
101        DataAnalysisProblemData problemDataClone = (DataAnalysisProblemData)ProblemData.Clone();
102        var solution = new SymbolicRegressionSolution(problemDataClone, model, lowerEstimationLimit, upperEstimationLimit);
103        solution.Name = BestSolutionParameterName;
104        solution.Description = "Best solution on validation partition found over the whole run.";
105        BestSolutionParameter.ActualValue = solution;
106        BestSolutionQualityParameter.ActualValue = Quality[i];
107        BestSymbolicRegressionSolutionAnalyzer.UpdateSymbolicRegressionBestSolutionResults(solution, problemDataClone, Results, VariableFrequencies);
108      }
109      return BestSolutionParameter.ActualValue;
110    }
111
112    public static void UpdateBestSolutionResults(SymbolicRegressionSolution solution, DataAnalysisProblemData problemData, ResultCollection results, IntValue currentGeneration, DataTable variableFrequencies) {
113      RegressionSolutionAnalyzer.UpdateBestSolutionResults(solution, problemData, results, currentGeneration);
114      UpdateSymbolicRegressionBestSolutionResults(solution, problemData, results, variableFrequencies);
115    }
116
117    private static void UpdateSymbolicRegressionBestSolutionResults(SymbolicRegressionSolution solution, DataAnalysisProblemData problemData, ResultCollection results, DataTable variableFrequencies) {
118      if (results.ContainsKey(BestSolutionInputvariableCountResultName)) {
119        results[BestSolutionInputvariableCountResultName].Value = new IntValue(solution.Model.InputVariables.Count());
120        results[VariableImpactsResultName].Value = CalculateVariableImpacts(variableFrequencies);
121      } else {
122        results.Add(new Result(BestSolutionInputvariableCountResultName, new IntValue(solution.Model.InputVariables.Count())));
123        results.Add(new Result(VariableImpactsResultName, CalculateVariableImpacts(variableFrequencies)));
124      }
125    }
126
127
128    private static DoubleMatrix CalculateVariableImpacts(DataTable variableFrequencies) {
129      if (variableFrequencies != null) {
130        var impacts = new DoubleMatrix(variableFrequencies.Rows.Count, 1, new string[] { "Impact" }, variableFrequencies.Rows.Select(x => x.Name));
131        impacts.SortableView = true;
132        int rowIndex = 0;
133        foreach (var dataRow in variableFrequencies.Rows) {
134          string variableName = dataRow.Name;
135          impacts[rowIndex++, 0] = dataRow.Values.Average();
136        }
137        return impacts;
138      } else return new DoubleMatrix(1, 1);
139    }
140  }
141}
Note: See TracBrowser for help on using the repository browser.