Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/BestSymbolicRegressionSolutionAnalyzer.cs @ 4857

Last change on this file since 4857 was 4475, checked in by gkronber, 14 years ago

Fixed bugs in time series prognosis classes #1142.

File size: 8.8 KB
RevLine 
[3651]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
[4068]23using HeuristicLab.Analysis;
[3651]24using HeuristicLab.Core;
25using HeuristicLab.Data;
[4068]26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[3651]27using HeuristicLab.Optimization;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Problems.DataAnalysis.Symbolic;
31
32namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
[3681]33  [Item("BestSymbolicRegressionSolutionAnalyzer", "An operator for analyzing the best solution of symbolic regression problems given in symbolic expression tree encoding.")]
[3651]34  [StorableClass]
[3892]35  public sealed class BestSymbolicRegressionSolutionAnalyzer : RegressionSolutionAnalyzer, ISymbolicRegressionAnalyzer {
[3651]36    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
37    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
[3892]38    private const string BestSolutionInputvariableCountResultName = "Variables used by best solution";
[3905]39    private const string VariableFrequenciesParameterName = "VariableFrequencies";
40    private const string VariableImpactsResultName = "Integrated variable frequencies";
[3651]41    private const string BestSolutionParameterName = "BestSolution";
[4195]42    private const string BestSolutionComplexity = "Best solution complexity";
[3651]43
[3892]44    #region parameter properties
[3681]45    public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
46      get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
[3651]47    }
[3681]48    public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
49      get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
[3651]50    }
51    public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
52      get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
53    }
[3905]54    public ILookupParameter<DataTable> VariableFrequenciesParameter {
55      get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
56    }
[3892]57    #endregion
58    #region properties
59    public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
60      get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
[3651]61    }
[3892]62    public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
63      get { return SymbolicExpressionTreeParameter.ActualValue; }
[3651]64    }
[3905]65    public DataTable VariableFrequencies {
66      get { return VariableFrequenciesParameter.ActualValue; }
67    }
[3892]68    #endregion
[3651]69
[3681]70    public BestSymbolicRegressionSolutionAnalyzer()
[3651]71      : base() {
[3659]72      Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
[3681]73      Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
[3905]74      Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
[3651]75      Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
76    }
77
[3905]78    [StorableHook(HookType.AfterDeserialization)]
79    private void Initialize() {
80      if (!Parameters.ContainsKey(VariableFrequenciesParameterName)) {
81        Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
82      }
83    }
84
[3892]85    protected override DataAnalysisSolution UpdateBestSolution() {
86      double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
87      double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
[3651]88
[3892]89      int i = Quality.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index;
[3651]90
[3892]91      if (BestSolutionQualityParameter.ActualValue == null || BestSolutionQualityParameter.ActualValue.Value > Quality[i].Value) {
92        var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
[3915]93          SymbolicExpressionTree[i]);
[4475]94        var solution = new SymbolicRegressionSolution((DataAnalysisProblemData)ProblemData.Clone(), model, lowerEstimationLimit, upperEstimationLimit);
[3996]95        solution.Name = BestSolutionParameterName;
96        solution.Description = "Best solution on validation partition found over the whole run.";
[3651]97        BestSolutionParameter.ActualValue = solution;
[3892]98        BestSolutionQualityParameter.ActualValue = Quality[i];
[3996]99        BestSymbolicRegressionSolutionAnalyzer.UpdateSymbolicRegressionBestSolutionResults(solution, ProblemData, Results, VariableFrequencies);
[3651]100      }
[3892]101      return BestSolutionParameter.ActualValue;
[3651]102    }
103
[3996]104    public static void UpdateBestSolutionResults(SymbolicRegressionSolution bestSolution, DataAnalysisProblemData problemData, ResultCollection results, IntValue currentGeneration, DataTable variableFrequencies) {
105      RegressionSolutionAnalyzer.UpdateBestSolutionResults(bestSolution, problemData, results, currentGeneration);
106      UpdateSymbolicRegressionBestSolutionResults(bestSolution, problemData, results, variableFrequencies);
107    }
108
109    private static void UpdateSymbolicRegressionBestSolutionResults(SymbolicRegressionSolution bestSolution, DataAnalysisProblemData problemData, ResultCollection results, DataTable variableFrequencies) {
110      if (results.ContainsKey(BestSolutionInputvariableCountResultName)) {
111        results[BestSolutionInputvariableCountResultName].Value = new IntValue(bestSolution.Model.InputVariables.Count());
112        results[VariableImpactsResultName].Value = CalculateVariableImpacts(variableFrequencies);
[4195]113        var sizeTable = (DataTable)results[BestSolutionComplexity].Value;
114        sizeTable.Rows["Best solution size"].Values.Add(bestSolution.Model.SymbolicExpressionTree.Size);
115        sizeTable.Rows["Best solution height"].Values.Add(bestSolution.Model.SymbolicExpressionTree.Height);
116        sizeTable.Rows["Best solution variables"].Values.Add(bestSolution.Model.InputVariables.Count());
[3996]117      } else {
118        results.Add(new Result(BestSolutionInputvariableCountResultName, new IntValue(bestSolution.Model.InputVariables.Count())));
119        results.Add(new Result(VariableImpactsResultName, CalculateVariableImpacts(variableFrequencies)));
[4195]120        var sizeTable = new DataTable("Best solution complexity");
121        sizeTable.Rows.Add(new DataRow("Best solution size"));
122        sizeTable.Rows.Add(new DataRow("Best solution height"));
123        sizeTable.Rows.Add(new DataRow("Best solution variables"));
124        sizeTable.Rows["Best solution size"].Values.Add(bestSolution.Model.SymbolicExpressionTree.Size);
125        sizeTable.Rows["Best solution height"].Values.Add(bestSolution.Model.SymbolicExpressionTree.Height);
126        sizeTable.Rows["Best solution variables"].Values.Add(bestSolution.Model.InputVariables.Count());
127        results.Add(new Result(BestSolutionComplexity, sizeTable));
[3996]128      }
129    }
130
131
132    private static DoubleMatrix CalculateVariableImpacts(DataTable variableFrequencies) {
133      if (variableFrequencies != null) {
134        var impacts = new DoubleMatrix(variableFrequencies.Rows.Count, 1, new string[] { "Impact" }, variableFrequencies.Rows.Select(x => x.Name));
[3922]135        impacts.SortableView = true;
[3905]136        int rowIndex = 0;
[3996]137        foreach (var dataRow in variableFrequencies.Rows) {
[3905]138          string variableName = dataRow.Name;
[4125]139          impacts[rowIndex++, 0] = dataRow.Values.Average();
[3905]140        }
141        return impacts;
142      } else return new DoubleMatrix(1, 1);
143    }
[3651]144  }
145}
Note: See TracBrowser for help on using the repository browser.