1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.SupportVectorMachine;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Regression.SupportVectorRegression {
|
---|
34 | [Item("BestSupportVectorRegressionSolutionAnalyzer", "An operator for analyzing the best solution of support vector regression problems.")]
|
---|
35 | [StorableClass]
|
---|
36 | public sealed class BestSupportVectorRegressionSolutionAnalyzer : RegressionSolutionAnalyzer {
|
---|
37 | private const string SupportVectorRegressionModelParameterName = "SupportVectorRegressionModel";
|
---|
38 | private const string BestSolutionInputvariableCountResultName = "Variables used by best solution";
|
---|
39 | private const string BestSolutionParameterName = "BestSolution";
|
---|
40 |
|
---|
41 | #region parameter properties
|
---|
42 | public ScopeTreeLookupParameter<SupportVectorMachineModel> SupportVectorRegressionModelParameter {
|
---|
43 | get { return (ScopeTreeLookupParameter<SupportVectorMachineModel>)Parameters[SupportVectorRegressionModelParameterName]; }
|
---|
44 | }
|
---|
45 | public ILookupParameter<SupportVectorRegressionSolution> BestSolutionParameter {
|
---|
46 | get { return (ILookupParameter<SupportVectorRegressionSolution>)Parameters[BestSolutionParameterName]; }
|
---|
47 | }
|
---|
48 | #endregion
|
---|
49 | #region properties
|
---|
50 | public ItemArray<SupportVectorMachineModel> SupportVectorMachineModel {
|
---|
51 | get { return SupportVectorRegressionModelParameter.ActualValue; }
|
---|
52 | }
|
---|
53 | #endregion
|
---|
54 |
|
---|
55 | [StorableConstructor]
|
---|
56 | private BestSupportVectorRegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
57 | private BestSupportVectorRegressionSolutionAnalyzer(BestSupportVectorRegressionSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
58 | public BestSupportVectorRegressionSolutionAnalyzer()
|
---|
59 | : base() {
|
---|
60 | Parameters.Add(new ScopeTreeLookupParameter<SupportVectorMachineModel>(SupportVectorRegressionModelParameterName, "The support vector regression models to analyze."));
|
---|
61 | Parameters.Add(new LookupParameter<SupportVectorRegressionSolution>(BestSolutionParameterName, "The best support vector regression solution."));
|
---|
62 | }
|
---|
63 |
|
---|
64 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
65 | return new BestSupportVectorRegressionSolutionAnalyzer(this, cloner);
|
---|
66 | }
|
---|
67 |
|
---|
68 | protected override DataAnalysisSolution UpdateBestSolution() {
|
---|
69 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
70 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
71 |
|
---|
72 | int i = Quality.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index;
|
---|
73 |
|
---|
74 | if (BestSolutionQualityParameter.ActualValue == null || BestSolutionQualityParameter.ActualValue.Value > Quality[i].Value) {
|
---|
75 | IEnumerable<string> inputVariables = from var in ProblemData.InputVariables
|
---|
76 | where ProblemData.InputVariables.ItemChecked(var)
|
---|
77 | select var.Value;
|
---|
78 | var solution = new SupportVectorRegressionSolution((DataAnalysisProblemData)ProblemData.Clone(), SupportVectorMachineModel[i], inputVariables, lowerEstimationLimit, upperEstimationLimit);
|
---|
79 |
|
---|
80 | BestSolutionParameter.ActualValue = solution;
|
---|
81 | BestSolutionQualityParameter.ActualValue = Quality[i];
|
---|
82 |
|
---|
83 | if (Results.ContainsKey(BestSolutionInputvariableCountResultName)) {
|
---|
84 | Results[BestSolutionInputvariableCountResultName].Value = new IntValue(inputVariables.Count());
|
---|
85 | } else {
|
---|
86 | Results.Add(new Result(BestSolutionInputvariableCountResultName, new IntValue(inputVariables.Count())));
|
---|
87 | }
|
---|
88 | }
|
---|
89 | return BestSolutionParameter.ActualValue;
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|