1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Operators;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
33 | [StorableClass]
|
---|
34 | public abstract class RegressionSolutionAnalyzer : SingleSuccessorOperator {
|
---|
35 | private const string ProblemDataParameterName = "ProblemData";
|
---|
36 | private const string QualityParameterName = "Quality";
|
---|
37 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
38 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
39 | private const string BestSolutionQualityParameterName = "BestSolutionQuality";
|
---|
40 | private const string GenerationsParameterName = "Generations";
|
---|
41 | private const string ResultsParameterName = "Results";
|
---|
42 | private const string BestSolutionResultName = "Best solution (on validation set)";
|
---|
43 | private const string BestSolutionTrainingRSquared = "Best solution R² (training)";
|
---|
44 | private const string BestSolutionTestRSquared = "Best solution R² (test)";
|
---|
45 | private const string BestSolutionTrainingMse = "Best solution mean squared error (training)";
|
---|
46 | private const string BestSolutionTestMse = "Best solution mean squared error (test)";
|
---|
47 | private const string BestSolutionTrainingRelativeError = "Best solution average relative error (training)";
|
---|
48 | private const string BestSolutionTestRelativeError = "Best solution average relative error (test)";
|
---|
49 | private const string BestSolutionGeneration = "Best solution generation";
|
---|
50 |
|
---|
51 | #region parameter properties
|
---|
52 | public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
|
---|
53 | get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
54 | }
|
---|
55 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
56 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
|
---|
57 | }
|
---|
58 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
59 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
60 | }
|
---|
61 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
62 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
63 | }
|
---|
64 | public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
|
---|
65 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
|
---|
66 | }
|
---|
67 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
68 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
69 | }
|
---|
70 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
71 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
72 | }
|
---|
73 | #endregion
|
---|
74 | #region properties
|
---|
75 | public DoubleValue UpperEstimationLimit {
|
---|
76 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
77 | }
|
---|
78 | public DoubleValue LowerEstimationLimit {
|
---|
79 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
80 | }
|
---|
81 | public ItemArray<DoubleValue> Quality {
|
---|
82 | get { return QualityParameter.ActualValue; }
|
---|
83 | }
|
---|
84 | public ResultCollection Results {
|
---|
85 | get { return ResultsParameter.ActualValue; }
|
---|
86 | }
|
---|
87 | public DataAnalysisProblemData ProblemData {
|
---|
88 | get { return ProblemDataParameter.ActualValue; }
|
---|
89 | }
|
---|
90 | #endregion
|
---|
91 |
|
---|
92 |
|
---|
93 | [StorableConstructor]
|
---|
94 | protected RegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
95 | protected RegressionSolutionAnalyzer(RegressionSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
96 | public RegressionSolutionAnalyzer()
|
---|
97 | : base() {
|
---|
98 | Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
99 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
100 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
101 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(QualityParameterName, "The qualities of the symbolic regression trees which should be analyzed."));
|
---|
102 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best regression solution."));
|
---|
103 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
104 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
|
---|
105 | }
|
---|
106 |
|
---|
107 | [StorableHook(HookType.AfterDeserialization)]
|
---|
108 | private void AfterDeserialization() {
|
---|
109 | // backwards compatibility
|
---|
110 | if (!Parameters.ContainsKey(GenerationsParameterName)) {
|
---|
111 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 | public override IOperation Apply() {
|
---|
116 | DoubleValue prevBestSolutionQuality = BestSolutionQualityParameter.ActualValue;
|
---|
117 | var bestSolution = UpdateBestSolution();
|
---|
118 | if (prevBestSolutionQuality == null || prevBestSolutionQuality.Value > BestSolutionQualityParameter.ActualValue.Value) {
|
---|
119 | RegressionSolutionAnalyzer.UpdateBestSolutionResults(bestSolution, ProblemData, Results, GenerationsParameter.ActualValue);
|
---|
120 | }
|
---|
121 |
|
---|
122 | return base.Apply();
|
---|
123 | }
|
---|
124 |
|
---|
125 | public static void UpdateBestSolutionResults(DataAnalysisSolution solution, DataAnalysisProblemData problemData, ResultCollection results, IntValue generation) {
|
---|
126 | #region update R2,MSE, Rel Error
|
---|
127 | IEnumerable<double> trainingValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable.Value, problemData.TrainingIndizes);
|
---|
128 | IEnumerable<double> testValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable.Value, problemData.TestIndizes);
|
---|
129 | OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
|
---|
130 | OnlineMeanAbsolutePercentageErrorEvaluator relErrorEvaluator = new OnlineMeanAbsolutePercentageErrorEvaluator();
|
---|
131 | OnlinePearsonsRSquaredEvaluator r2Evaluator = new OnlinePearsonsRSquaredEvaluator();
|
---|
132 |
|
---|
133 | #region training
|
---|
134 | var originalEnumerator = trainingValues.GetEnumerator();
|
---|
135 | var estimatedEnumerator = solution.EstimatedTrainingValues.GetEnumerator();
|
---|
136 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
137 | mseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
138 | r2Evaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
139 | relErrorEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
140 | }
|
---|
141 | double trainingR2 = r2Evaluator.RSquared;
|
---|
142 | double trainingMse = mseEvaluator.MeanSquaredError;
|
---|
143 | double trainingRelError = relErrorEvaluator.MeanAbsolutePercentageError;
|
---|
144 | #endregion
|
---|
145 |
|
---|
146 | mseEvaluator.Reset();
|
---|
147 | relErrorEvaluator.Reset();
|
---|
148 | r2Evaluator.Reset();
|
---|
149 |
|
---|
150 | #region test
|
---|
151 | originalEnumerator = testValues.GetEnumerator();
|
---|
152 | estimatedEnumerator = solution.EstimatedTestValues.GetEnumerator();
|
---|
153 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
154 | mseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
155 | r2Evaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
156 | relErrorEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
157 | }
|
---|
158 | double testR2 = r2Evaluator.RSquared;
|
---|
159 | double testMse = mseEvaluator.MeanSquaredError;
|
---|
160 | double testRelError = relErrorEvaluator.MeanAbsolutePercentageError;
|
---|
161 | #endregion
|
---|
162 |
|
---|
163 | if (results.ContainsKey(BestSolutionResultName)) {
|
---|
164 | results[BestSolutionResultName].Value = solution;
|
---|
165 | results[BestSolutionTrainingRSquared].Value = new DoubleValue(trainingR2);
|
---|
166 | results[BestSolutionTestRSquared].Value = new DoubleValue(testR2);
|
---|
167 | results[BestSolutionTrainingMse].Value = new DoubleValue(trainingMse);
|
---|
168 | results[BestSolutionTestMse].Value = new DoubleValue(testMse);
|
---|
169 | results[BestSolutionTrainingRelativeError].Value = new DoubleValue(trainingRelError);
|
---|
170 | results[BestSolutionTestRelativeError].Value = new DoubleValue(testRelError);
|
---|
171 | if (generation != null) // this check is needed because linear regression solutions do not have a generations parameter
|
---|
172 | results[BestSolutionGeneration].Value = new IntValue(generation.Value);
|
---|
173 | } else {
|
---|
174 | results.Add(new Result(BestSolutionResultName, solution));
|
---|
175 | results.Add(new Result(BestSolutionTrainingRSquared, new DoubleValue(trainingR2)));
|
---|
176 | results.Add(new Result(BestSolutionTestRSquared, new DoubleValue(testR2)));
|
---|
177 | results.Add(new Result(BestSolutionTrainingMse, new DoubleValue(trainingMse)));
|
---|
178 | results.Add(new Result(BestSolutionTestMse, new DoubleValue(testMse)));
|
---|
179 | results.Add(new Result(BestSolutionTrainingRelativeError, new DoubleValue(trainingRelError)));
|
---|
180 | results.Add(new Result(BestSolutionTestRelativeError, new DoubleValue(testRelError)));
|
---|
181 | if (generation != null)
|
---|
182 | results.Add(new Result(BestSolutionGeneration, new IntValue(generation.Value)));
|
---|
183 | }
|
---|
184 | #endregion
|
---|
185 | }
|
---|
186 |
|
---|
187 | protected abstract DataAnalysisSolution UpdateBestSolution();
|
---|
188 | }
|
---|
189 | }
|
---|