[4401] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Symbols;
|
---|
| 29 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
| 30 | using System.Linq;
|
---|
| 31 | using System.Drawing;
|
---|
| 32 | using System;
|
---|
[4475] | 33 | using HeuristicLab.Data;
|
---|
[4401] | 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic {
|
---|
| 36 | [StorableClass]
|
---|
| 37 | [Item("SymbolicTimeSeriesPrognosisSolution", "Represents a solution for time series prognosis.")]
|
---|
[4457] | 38 | public class SymbolicTimeSeriesPrognosisSolution : NamedItem, IMultiVariateDataAnalysisSolution, IStorableContent {
|
---|
[4401] | 39 | [Storable]
|
---|
| 40 | private MultiVariateDataAnalysisProblemData problemData;
|
---|
| 41 | [Storable]
|
---|
| 42 | private SymbolicTimeSeriesPrognosisModel model;
|
---|
| 43 | [Storable]
|
---|
| 44 | private int horizon;
|
---|
[4457] | 45 | [Storable]
|
---|
| 46 | private string conditionalEvaluationVariable;
|
---|
[4475] | 47 | [Storable]
|
---|
| 48 | private double[] lowerEstimationLimit;
|
---|
| 49 | [Storable]
|
---|
| 50 | private double[] upperEstimationLimit;
|
---|
[4401] | 51 |
|
---|
[4461] | 52 | public string Filename { get; set; }
|
---|
[4457] | 53 |
|
---|
[4401] | 54 | [StorableConstructor]
|
---|
| 55 | protected SymbolicTimeSeriesPrognosisSolution(bool deserializing) : base(deserializing) { }
|
---|
| 56 |
|
---|
| 57 | public SymbolicTimeSeriesPrognosisSolution() {
|
---|
| 58 | horizon = 1;
|
---|
| 59 | }
|
---|
| 60 |
|
---|
[4475] | 61 | public SymbolicTimeSeriesPrognosisSolution(MultiVariateDataAnalysisProblemData problemData, SymbolicTimeSeriesPrognosisModel model, int horizon, string conditionalEvaluationVariable, double[] lowerEstimationLimit, double[] upperEstimationLimit)
|
---|
[4401] | 62 | : this() {
|
---|
| 63 | this.problemData = problemData;
|
---|
| 64 | this.model = model;
|
---|
| 65 | this.horizon = horizon;
|
---|
[4457] | 66 | this.conditionalEvaluationVariable = conditionalEvaluationVariable;
|
---|
[4475] | 67 | this.lowerEstimationLimit = (double[])lowerEstimationLimit.Clone();
|
---|
| 68 | this.upperEstimationLimit = (double[])upperEstimationLimit.Clone();
|
---|
[4401] | 69 | }
|
---|
| 70 |
|
---|
| 71 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 72 | private void Initialize() {
|
---|
| 73 | if (problemData != null)
|
---|
| 74 | RegisterProblemDataEvents();
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | public override Image ItemImage {
|
---|
| 78 | get { return HeuristicLab.Common.Resources.VS2008ImageLibrary.Function; }
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | public int Horizon {
|
---|
| 82 | get { return horizon; }
|
---|
| 83 | set {
|
---|
| 84 | if (value <= 0) throw new ArgumentException();
|
---|
| 85 | horizon = value;
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | public SymbolicTimeSeriesPrognosisModel Model {
|
---|
| 90 | get { return model; }
|
---|
| 91 | set {
|
---|
| 92 | if (model != value) {
|
---|
| 93 | if (value == null) throw new ArgumentNullException();
|
---|
| 94 | model = value;
|
---|
| 95 | RaiseModelChanged();
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[4457] | 100 | public string ConditionalEvaluationVariable {
|
---|
| 101 | get { return conditionalEvaluationVariable; }
|
---|
| 102 | set {
|
---|
| 103 | if (conditionalEvaluationVariable != value) {
|
---|
| 104 | conditionalEvaluationVariable = value;
|
---|
| 105 | RaiseEstimatedValuesChanged();
|
---|
| 106 | }
|
---|
| 107 | }
|
---|
| 108 | }
|
---|
[4401] | 109 |
|
---|
[4475] | 110 | public double GetLowerEstimationLimit(int i) {
|
---|
| 111 | return lowerEstimationLimit[i];
|
---|
| 112 | }
|
---|
| 113 | public double GetUpperEstimationLimit(int i) {
|
---|
| 114 | return upperEstimationLimit[i];
|
---|
| 115 | }
|
---|
[4457] | 116 |
|
---|
[4475] | 117 |
|
---|
[4401] | 118 | public IEnumerable<double[]> GetPrognosis(int t) {
|
---|
[4556] | 119 | return model.GetEstimatedValues(problemData, t, t + 1, horizon);
|
---|
[4401] | 120 | }
|
---|
| 121 |
|
---|
| 122 | #region IMultiVariateDataAnalysisSolution Members
|
---|
| 123 |
|
---|
| 124 | public MultiVariateDataAnalysisProblemData ProblemData {
|
---|
| 125 | get { return problemData; }
|
---|
| 126 | set {
|
---|
| 127 | if (problemData != value) {
|
---|
| 128 | if (value == null) throw new ArgumentNullException();
|
---|
| 129 | if (model != null && problemData != null &&
|
---|
| 130 | !(problemData.InputVariables
|
---|
| 131 | .Select(c => c.Value)
|
---|
| 132 | .SequenceEqual(value.InputVariables
|
---|
| 133 | .Select(c => c.Value)) &&
|
---|
| 134 | problemData.TargetVariables
|
---|
| 135 | .Select(c => c.Value)
|
---|
| 136 | .SequenceEqual(value.TargetVariables
|
---|
| 137 | .Select(c => c.Value)))) {
|
---|
| 138 | throw new ArgumentException("Could not set new problem data with different structure");
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | if (problemData != null) DeregisterProblemDataEvents();
|
---|
| 142 | problemData = value;
|
---|
| 143 | RaiseProblemDataChanged();
|
---|
| 144 | RegisterProblemDataEvents();
|
---|
| 145 | }
|
---|
| 146 | }
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | IMultiVariateDataAnalysisModel IMultiVariateDataAnalysisSolution.Model {
|
---|
| 150 | get { return model; }
|
---|
| 151 | }
|
---|
| 152 |
|
---|
| 153 | public IEnumerable<double[]> EstimatedValues {
|
---|
| 154 | get {
|
---|
[4475] | 155 | return ApplyEstimationLimits(model.GetEstimatedValues(problemData, 0, problemData.Dataset.Rows));
|
---|
[4401] | 156 | }
|
---|
| 157 | }
|
---|
| 158 |
|
---|
| 159 | public IEnumerable<double[]> EstimatedTrainingValues {
|
---|
| 160 | get {
|
---|
[4475] | 161 | return ApplyEstimationLimits(model.GetEstimatedValues(problemData, problemData.TrainingSamplesStart.Value, problemData.TrainingSamplesEnd.Value));
|
---|
[4401] | 162 | }
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | public IEnumerable<double[]> EstimatedTestValues {
|
---|
| 166 | get {
|
---|
[4475] | 167 | return ApplyEstimationLimits(model.GetEstimatedValues(problemData, problemData.TestSamplesStart.Value, problemData.TestSamplesEnd.Value));
|
---|
[4401] | 168 | }
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | #endregion
|
---|
| 172 |
|
---|
| 173 |
|
---|
| 174 | #region Events
|
---|
| 175 | protected virtual void RegisterProblemDataEvents() {
|
---|
| 176 | ProblemData.ProblemDataChanged += new EventHandler(ProblemData_Changed);
|
---|
| 177 | }
|
---|
| 178 | protected virtual void DeregisterProblemDataEvents() {
|
---|
| 179 | ProblemData.ProblemDataChanged += new EventHandler(ProblemData_Changed);
|
---|
| 180 | }
|
---|
| 181 | private void ProblemData_Changed(object sender, EventArgs e) {
|
---|
| 182 | RaiseProblemDataChanged();
|
---|
| 183 | }
|
---|
| 184 |
|
---|
| 185 | public event EventHandler ProblemDataChanged;
|
---|
| 186 | protected virtual void RaiseProblemDataChanged() {
|
---|
| 187 | var listeners = ProblemDataChanged;
|
---|
| 188 | if (listeners != null)
|
---|
| 189 | listeners(this, EventArgs.Empty);
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | public event EventHandler ModelChanged;
|
---|
| 193 | protected virtual void RaiseModelChanged() {
|
---|
| 194 | EventHandler handler = ModelChanged;
|
---|
| 195 | if (handler != null)
|
---|
| 196 | handler(this, EventArgs.Empty);
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | public event EventHandler EstimatedValuesChanged;
|
---|
| 200 | protected virtual void RaiseEstimatedValuesChanged() {
|
---|
| 201 | var listeners = EstimatedValuesChanged;
|
---|
| 202 | if (listeners != null)
|
---|
| 203 | listeners(this, EventArgs.Empty);
|
---|
| 204 | }
|
---|
| 205 | #endregion
|
---|
| 206 |
|
---|
| 207 |
|
---|
| 208 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 209 | SymbolicTimeSeriesPrognosisSolution clone = (SymbolicTimeSeriesPrognosisSolution)base.Clone(cloner);
|
---|
| 210 | clone.problemData = (MultiVariateDataAnalysisProblemData)cloner.Clone(problemData);
|
---|
| 211 | clone.model = (SymbolicTimeSeriesPrognosisModel)cloner.Clone(model);
|
---|
| 212 | clone.horizon = horizon;
|
---|
[4457] | 213 | clone.conditionalEvaluationVariable = conditionalEvaluationVariable;
|
---|
[4475] | 214 | clone.lowerEstimationLimit = (double[])lowerEstimationLimit.Clone();
|
---|
| 215 | clone.upperEstimationLimit = (double[])upperEstimationLimit.Clone();
|
---|
[4401] | 216 | return clone;
|
---|
| 217 | }
|
---|
[4475] | 218 |
|
---|
| 219 | private IEnumerable<double[]> ApplyEstimationLimits(IEnumerable<double[]> values) {
|
---|
| 220 | foreach (var xs in values) {
|
---|
| 221 | for (int i = 0; i < xs.Length; i++) {
|
---|
[5010] | 222 | if (double.IsNaN(xs[i])) {
|
---|
| 223 | xs[i] = (upperEstimationLimit[i] - lowerEstimationLimit[i]) / 2.0 + lowerEstimationLimit[i];
|
---|
| 224 | } else {
|
---|
| 225 | xs[i] = Math.Max(lowerEstimationLimit[i], Math.Min(upperEstimationLimit[i], xs[i]));
|
---|
| 226 | }
|
---|
[4475] | 227 | }
|
---|
| 228 | yield return xs;
|
---|
| 229 | }
|
---|
| 230 | }
|
---|
[4401] | 231 | }
|
---|
| 232 | } |
---|