1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using System.Collections.Generic;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Compiler;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Interfaces;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Symbols;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis {
|
---|
36 | [StorableClass]
|
---|
37 | [Item("SymbolicTimeSeriesExpressionInterpreter", "Interpreter for symbolic expression trees representing time series forecast models.")]
|
---|
38 | public class SymbolicTimeSeriesExpressionInterpreter : NamedItem, ISymbolicTimeSeriesExpressionInterpreter {
|
---|
39 | private class OpCodes {
|
---|
40 | public const byte Add = 1;
|
---|
41 | public const byte Sub = 2;
|
---|
42 | public const byte Mul = 3;
|
---|
43 | public const byte Div = 4;
|
---|
44 |
|
---|
45 | public const byte Sin = 5;
|
---|
46 | public const byte Cos = 6;
|
---|
47 | public const byte Tan = 7;
|
---|
48 |
|
---|
49 | public const byte Log = 8;
|
---|
50 | public const byte Exp = 9;
|
---|
51 |
|
---|
52 | public const byte IfThenElse = 10;
|
---|
53 |
|
---|
54 | public const byte GT = 11;
|
---|
55 | public const byte LT = 12;
|
---|
56 |
|
---|
57 | public const byte AND = 13;
|
---|
58 | public const byte OR = 14;
|
---|
59 | public const byte NOT = 15;
|
---|
60 |
|
---|
61 |
|
---|
62 | public const byte Average = 16;
|
---|
63 |
|
---|
64 | public const byte Call = 17;
|
---|
65 |
|
---|
66 | public const byte Variable = 18;
|
---|
67 | public const byte LagVariable = 19;
|
---|
68 | public const byte Constant = 20;
|
---|
69 | public const byte Arg = 21;
|
---|
70 | public const byte Differential = 22;
|
---|
71 | public const byte Integral = 23;
|
---|
72 | public const byte MovingAverage = 24;
|
---|
73 | }
|
---|
74 |
|
---|
75 | private Dictionary<Type, byte> symbolToOpcode = new Dictionary<Type, byte>() {
|
---|
76 | { typeof(Addition), OpCodes.Add },
|
---|
77 | { typeof(Subtraction), OpCodes.Sub },
|
---|
78 | { typeof(Multiplication), OpCodes.Mul },
|
---|
79 | { typeof(Division), OpCodes.Div },
|
---|
80 | { typeof(Sine), OpCodes.Sin },
|
---|
81 | { typeof(Cosine), OpCodes.Cos },
|
---|
82 | { typeof(Tangent), OpCodes.Tan },
|
---|
83 | { typeof(Logarithm), OpCodes.Log },
|
---|
84 | { typeof(Exponential), OpCodes.Exp },
|
---|
85 | { typeof(IfThenElse), OpCodes.IfThenElse },
|
---|
86 | { typeof(GreaterThan), OpCodes.GT },
|
---|
87 | { typeof(LessThan), OpCodes.LT },
|
---|
88 | { typeof(And), OpCodes.AND },
|
---|
89 | { typeof(Or), OpCodes.OR },
|
---|
90 | { typeof(Not), OpCodes.NOT},
|
---|
91 | { typeof(Average), OpCodes.Average},
|
---|
92 | { typeof(InvokeFunction), OpCodes.Call },
|
---|
93 | { typeof(HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable), OpCodes.Variable },
|
---|
94 | { typeof(LaggedVariable), OpCodes.LagVariable },
|
---|
95 | { typeof(IntegratedVariable), OpCodes.Integral },
|
---|
96 | { typeof(DerivativeVariable), OpCodes.Differential },
|
---|
97 | { typeof(MovingAverage), OpCodes.MovingAverage },
|
---|
98 | { typeof(Constant), OpCodes.Constant },
|
---|
99 | { typeof(Argument), OpCodes.Arg },
|
---|
100 | };
|
---|
101 | private const int ARGUMENT_STACK_SIZE = 1024;
|
---|
102 |
|
---|
103 | private Dataset dataset;
|
---|
104 | private int row;
|
---|
105 | private Instruction[] code;
|
---|
106 | private int pc;
|
---|
107 | private double[] argumentStack = new double[ARGUMENT_STACK_SIZE];
|
---|
108 | private int argStackPointer;
|
---|
109 | private Dictionary<int, double[]> estimatedTargetVariableValues;
|
---|
110 | private int currentPredictionHorizon;
|
---|
111 |
|
---|
112 | public override bool CanChangeName {
|
---|
113 | get { return false; }
|
---|
114 | }
|
---|
115 | public override bool CanChangeDescription {
|
---|
116 | get { return false; }
|
---|
117 | }
|
---|
118 | [StorableConstructor]
|
---|
119 | protected SymbolicTimeSeriesExpressionInterpreter(bool deserializing) : base(deserializing) { }
|
---|
120 | protected SymbolicTimeSeriesExpressionInterpreter(SymbolicTimeSeriesExpressionInterpreter original, Cloner cloner)
|
---|
121 | : base(original, cloner) {
|
---|
122 | }
|
---|
123 | public SymbolicTimeSeriesExpressionInterpreter()
|
---|
124 | : base() {
|
---|
125 | }
|
---|
126 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
127 | return new SymbolicTimeSeriesExpressionInterpreter(this, cloner);
|
---|
128 | }
|
---|
129 | #region ITimeSeriesExpressionInterpreter Members
|
---|
130 |
|
---|
131 | public IEnumerable<double[]> GetSymbolicExpressionTreeValues(SymbolicExpressionTree tree, Dataset dataset, IEnumerable<string> targetVariables, IEnumerable<int> rows, int predictionHorizon) {
|
---|
132 | this.dataset = dataset;
|
---|
133 | List<int> targetVariableIndexes = new List<int>();
|
---|
134 | estimatedTargetVariableValues = new Dictionary<int, double[]>();
|
---|
135 | foreach (string targetVariable in targetVariables) {
|
---|
136 | int index = dataset.GetVariableIndex(targetVariable);
|
---|
137 | targetVariableIndexes.Add(index);
|
---|
138 | estimatedTargetVariableValues.Add(index, new double[predictionHorizon]);
|
---|
139 | }
|
---|
140 | var compiler = new SymbolicExpressionTreeCompiler();
|
---|
141 | compiler.AddInstructionPostProcessingHook(PostProcessInstruction);
|
---|
142 | code = compiler.Compile(tree, MapSymbolToOpCode);
|
---|
143 |
|
---|
144 | foreach (var row in rows) {
|
---|
145 | // ResetVariableValues(dataset, row);
|
---|
146 | for (int step = 0; step < predictionHorizon; step++) {
|
---|
147 | this.row = row + step;
|
---|
148 | this.currentPredictionHorizon = step;
|
---|
149 | pc = 0;
|
---|
150 | argStackPointer = 0;
|
---|
151 | double[] estimatedValues = new double[tree.Root.SubTrees[0].SubTrees.Count];
|
---|
152 | int component = 0;
|
---|
153 | foreach (int targetVariableIndex in targetVariableIndexes) {
|
---|
154 | double estimatedValue = Evaluate();
|
---|
155 | estimatedTargetVariableValues[targetVariableIndex][step] = estimatedValue;
|
---|
156 | estimatedValues[component] = estimatedValue;
|
---|
157 | component++;
|
---|
158 | }
|
---|
159 | yield return estimatedValues;
|
---|
160 | }
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | public IEnumerable<double[]> GetScaledSymbolicExpressionTreeValues(SymbolicExpressionTree tree, Dataset dataset, IEnumerable<string> targetVariables, IEnumerable<int> rows, int predictionHorizon, double[] beta, double[] alpha) {
|
---|
165 | this.dataset = dataset;
|
---|
166 | List<int> targetVariableIndexes = new List<int>();
|
---|
167 | estimatedTargetVariableValues = new Dictionary<int, double[]>();
|
---|
168 | foreach (string targetVariable in targetVariables) {
|
---|
169 | int index = dataset.GetVariableIndex(targetVariable);
|
---|
170 | targetVariableIndexes.Add(index);
|
---|
171 | estimatedTargetVariableValues.Add(index, new double[predictionHorizon]);
|
---|
172 | }
|
---|
173 | var compiler = new SymbolicExpressionTreeCompiler();
|
---|
174 | compiler.AddInstructionPostProcessingHook(PostProcessInstruction);
|
---|
175 | code = compiler.Compile(tree, MapSymbolToOpCode);
|
---|
176 |
|
---|
177 | foreach (var row in rows) {
|
---|
178 | // ResetVariableValues(dataset, row);
|
---|
179 | for (int step = 0; step < predictionHorizon; step++) {
|
---|
180 | this.row = row + step;
|
---|
181 | this.currentPredictionHorizon = step;
|
---|
182 | pc = 0;
|
---|
183 | argStackPointer = 0;
|
---|
184 | double[] estimatedValues = new double[tree.Root.SubTrees[0].SubTrees.Count];
|
---|
185 | int component = 0;
|
---|
186 | foreach (int targetVariableIndex in targetVariableIndexes) {
|
---|
187 | double estimatedValue = Evaluate() * beta[component] + alpha[component];
|
---|
188 | estimatedTargetVariableValues[targetVariableIndex][step] = estimatedValue;
|
---|
189 | estimatedValues[component] = estimatedValue;
|
---|
190 | component++;
|
---|
191 | }
|
---|
192 | yield return estimatedValues;
|
---|
193 | }
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 | #endregion
|
---|
198 |
|
---|
199 | //private void ResetVariableValues(Dataset dataset, int start) {
|
---|
200 | // foreach (var pair in estimatedTargetVariableValues) {
|
---|
201 | // int targetVariableIndex = pair.Key;
|
---|
202 | // double[] values = pair.Value;
|
---|
203 | // for (int i = 0; i < values.Length; i++) {
|
---|
204 | // values[i] = dataset[start + i, targetVariableIndex];
|
---|
205 | // }
|
---|
206 | // }
|
---|
207 | //}
|
---|
208 |
|
---|
209 | private Instruction PostProcessInstruction(Instruction instr) {
|
---|
210 | if (instr.opCode == OpCodes.Variable || instr.opCode == OpCodes.LagVariable ||
|
---|
211 | instr.opCode == OpCodes.Integral || instr.opCode == OpCodes.MovingAverage || instr.opCode == OpCodes.Differential) {
|
---|
212 | var variableTreeNode = instr.dynamicNode as VariableTreeNode;
|
---|
213 | instr.iArg0 = (ushort)dataset.GetVariableIndex(variableTreeNode.VariableName);
|
---|
214 | }
|
---|
215 | return instr;
|
---|
216 | }
|
---|
217 |
|
---|
218 | private byte MapSymbolToOpCode(SymbolicExpressionTreeNode treeNode) {
|
---|
219 | if (symbolToOpcode.ContainsKey(treeNode.Symbol.GetType()))
|
---|
220 | return symbolToOpcode[treeNode.Symbol.GetType()];
|
---|
221 | else
|
---|
222 | throw new NotSupportedException("Symbol: " + treeNode.Symbol);
|
---|
223 | }
|
---|
224 |
|
---|
225 | private double Evaluate() {
|
---|
226 | Instruction currentInstr = code[pc++];
|
---|
227 | switch (currentInstr.opCode) {
|
---|
228 | case OpCodes.Add: {
|
---|
229 | double s = Evaluate();
|
---|
230 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
231 | s += Evaluate();
|
---|
232 | }
|
---|
233 | return s;
|
---|
234 | }
|
---|
235 | case OpCodes.Sub: {
|
---|
236 | double s = Evaluate();
|
---|
237 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
238 | s -= Evaluate();
|
---|
239 | }
|
---|
240 | if (currentInstr.nArguments == 1) s = -s;
|
---|
241 | return s;
|
---|
242 | }
|
---|
243 | case OpCodes.Mul: {
|
---|
244 | double p = Evaluate();
|
---|
245 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
246 | p *= Evaluate();
|
---|
247 | }
|
---|
248 | return p;
|
---|
249 | }
|
---|
250 | case OpCodes.Div: {
|
---|
251 | double p = Evaluate();
|
---|
252 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
253 | p /= Evaluate();
|
---|
254 | }
|
---|
255 | if (currentInstr.nArguments == 1) p = 1.0 / p;
|
---|
256 | return p;
|
---|
257 | }
|
---|
258 | case OpCodes.Average: {
|
---|
259 | double sum = Evaluate();
|
---|
260 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
261 | sum += Evaluate();
|
---|
262 | }
|
---|
263 | return sum / currentInstr.nArguments;
|
---|
264 | }
|
---|
265 | case OpCodes.Cos: {
|
---|
266 | return Math.Cos(Evaluate());
|
---|
267 | }
|
---|
268 | case OpCodes.Sin: {
|
---|
269 | return Math.Sin(Evaluate());
|
---|
270 | }
|
---|
271 | case OpCodes.Tan: {
|
---|
272 | return Math.Tan(Evaluate());
|
---|
273 | }
|
---|
274 | case OpCodes.Exp: {
|
---|
275 | return Math.Exp(Evaluate());
|
---|
276 | }
|
---|
277 | case OpCodes.Log: {
|
---|
278 | return Math.Log(Evaluate());
|
---|
279 | }
|
---|
280 | case OpCodes.IfThenElse: {
|
---|
281 | double condition = Evaluate();
|
---|
282 | double result;
|
---|
283 | if (condition > 0.0) {
|
---|
284 | result = Evaluate(); SkipBakedCode();
|
---|
285 | } else {
|
---|
286 | SkipBakedCode(); result = Evaluate();
|
---|
287 | }
|
---|
288 | return result;
|
---|
289 | }
|
---|
290 | case OpCodes.AND: {
|
---|
291 | double result = Evaluate();
|
---|
292 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
293 | if (result <= 0.0) SkipBakedCode();
|
---|
294 | else {
|
---|
295 | result = Evaluate();
|
---|
296 | }
|
---|
297 | }
|
---|
298 | return result <= 0.0 ? -1.0 : 1.0;
|
---|
299 | }
|
---|
300 | case OpCodes.OR: {
|
---|
301 | double result = Evaluate();
|
---|
302 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
303 | if (result > 0.0) SkipBakedCode();
|
---|
304 | else {
|
---|
305 | result = Evaluate();
|
---|
306 | }
|
---|
307 | }
|
---|
308 | return result > 0.0 ? 1.0 : -1.0;
|
---|
309 | }
|
---|
310 | case OpCodes.NOT: {
|
---|
311 | return -Evaluate();
|
---|
312 | }
|
---|
313 | case OpCodes.GT: {
|
---|
314 | double x = Evaluate();
|
---|
315 | double y = Evaluate();
|
---|
316 | if (x > y) return 1.0;
|
---|
317 | else return -1.0;
|
---|
318 | }
|
---|
319 | case OpCodes.LT: {
|
---|
320 | double x = Evaluate();
|
---|
321 | double y = Evaluate();
|
---|
322 | if (x < y) return 1.0;
|
---|
323 | else return -1.0;
|
---|
324 | }
|
---|
325 | case OpCodes.Call: {
|
---|
326 | // evaluate sub-trees
|
---|
327 | // push on argStack in reverse order
|
---|
328 | for (int i = 0; i < currentInstr.nArguments; i++) {
|
---|
329 | argumentStack[argStackPointer + currentInstr.nArguments - i] = Evaluate();
|
---|
330 | }
|
---|
331 | argStackPointer += currentInstr.nArguments;
|
---|
332 |
|
---|
333 | // save the pc
|
---|
334 | int nextPc = pc;
|
---|
335 | // set pc to start of function
|
---|
336 | pc = currentInstr.iArg0;
|
---|
337 | // evaluate the function
|
---|
338 | double v = Evaluate();
|
---|
339 |
|
---|
340 | // decrease the argument stack pointer by the number of arguments pushed
|
---|
341 | // to set the argStackPointer back to the original location
|
---|
342 | argStackPointer -= currentInstr.nArguments;
|
---|
343 |
|
---|
344 | // restore the pc => evaluation will continue at point after my subtrees
|
---|
345 | pc = nextPc;
|
---|
346 | return v;
|
---|
347 | }
|
---|
348 | case OpCodes.Arg: {
|
---|
349 | return argumentStack[argStackPointer - currentInstr.iArg0];
|
---|
350 | }
|
---|
351 | case OpCodes.Variable: {
|
---|
352 | var variableTreeNode = currentInstr.dynamicNode as VariableTreeNode;
|
---|
353 | return dataset[row, currentInstr.iArg0] * variableTreeNode.Weight;
|
---|
354 | }
|
---|
355 | case OpCodes.LagVariable: {
|
---|
356 | var lagVariableTreeNode = currentInstr.dynamicNode as LaggedVariableTreeNode;
|
---|
357 | int actualRow = row + lagVariableTreeNode.Lag;
|
---|
358 | if (actualRow < 0 || actualRow >= dataset.Rows + currentPredictionHorizon)
|
---|
359 | return double.NaN;
|
---|
360 | return GetVariableValue(currentInstr.iArg0, lagVariableTreeNode.Lag) * lagVariableTreeNode.Weight;
|
---|
361 | }
|
---|
362 | case OpCodes.MovingAverage: {
|
---|
363 | var movingAvgTreeNode = currentInstr.dynamicNode as MovingAverageTreeNode;
|
---|
364 | if (row + movingAvgTreeNode.MinTimeOffset < 0 || row + movingAvgTreeNode.MaxTimeOffset >= dataset.Rows + currentPredictionHorizon)
|
---|
365 | return double.NaN;
|
---|
366 | double sum = 0.0;
|
---|
367 | for (int relativeRow = movingAvgTreeNode.MinTimeOffset; relativeRow < movingAvgTreeNode.MaxTimeOffset; relativeRow++) {
|
---|
368 | sum += GetVariableValue(currentInstr.iArg0, relativeRow);
|
---|
369 | }
|
---|
370 | return movingAvgTreeNode.Weight * sum / (movingAvgTreeNode.MaxTimeOffset - movingAvgTreeNode.MinTimeOffset);
|
---|
371 | }
|
---|
372 | case OpCodes.Differential: {
|
---|
373 | var diffTreeNode = currentInstr.dynamicNode as DerivativeVariableTreeNode;
|
---|
374 | if (row + diffTreeNode.Lag - 2 < 0 || row + diffTreeNode.Lag >= dataset.Rows + currentPredictionHorizon)
|
---|
375 | return double.NaN;
|
---|
376 | double y_0 = GetVariableValue(currentInstr.iArg0, diffTreeNode.Lag);
|
---|
377 | double y_1 = GetVariableValue(currentInstr.iArg0, diffTreeNode.Lag - 1);
|
---|
378 | double y_2 = GetVariableValue(currentInstr.iArg0, diffTreeNode.Lag - 2);
|
---|
379 | return diffTreeNode.Weight * (y_0 - 4 * y_1 + 3 * y_2) / 2;
|
---|
380 | }
|
---|
381 | case OpCodes.Integral: {
|
---|
382 | var integralVarTreeNode = currentInstr.dynamicNode as IntegratedVariableTreeNode;
|
---|
383 | if (row + integralVarTreeNode.MinTimeOffset < 0 || row + integralVarTreeNode.MaxTimeOffset >= dataset.Rows + currentPredictionHorizon)
|
---|
384 | return double.NaN;
|
---|
385 | double sum = 0;
|
---|
386 | for (int relativeRow = integralVarTreeNode.MinTimeOffset; relativeRow < integralVarTreeNode.MaxTimeOffset; relativeRow++) {
|
---|
387 | sum += GetVariableValue(currentInstr.iArg0, relativeRow);
|
---|
388 | }
|
---|
389 | return integralVarTreeNode.Weight * sum;
|
---|
390 | }
|
---|
391 | case OpCodes.Constant: {
|
---|
392 | var constTreeNode = currentInstr.dynamicNode as ConstantTreeNode;
|
---|
393 | return constTreeNode.Value;
|
---|
394 | }
|
---|
395 | default: throw new NotSupportedException();
|
---|
396 | }
|
---|
397 | }
|
---|
398 |
|
---|
399 | private double GetVariableValue(int variableIndex, int timeoffset) {
|
---|
400 | if (currentPredictionHorizon + timeoffset >= 0) {
|
---|
401 | double[] values;
|
---|
402 | estimatedTargetVariableValues.TryGetValue(variableIndex, out values);
|
---|
403 | if (values != null) {
|
---|
404 | return values[currentPredictionHorizon + timeoffset];
|
---|
405 | }
|
---|
406 | }
|
---|
407 | if (row + timeoffset < 0 || row + timeoffset >= dataset.Rows) {
|
---|
408 | return double.NaN;
|
---|
409 | } else {
|
---|
410 | return dataset[row + timeoffset, variableIndex];
|
---|
411 | }
|
---|
412 | }
|
---|
413 |
|
---|
414 | // skips a whole branch
|
---|
415 | protected void SkipBakedCode() {
|
---|
416 | int i = 1;
|
---|
417 | while (i > 0) {
|
---|
418 | i += code[pc++].nArguments;
|
---|
419 | i--;
|
---|
420 | }
|
---|
421 | }
|
---|
422 | }
|
---|
423 | }
|
---|
424 |
|
---|