[4113] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using System.Collections.Generic;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
| 29 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
| 30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Compiler;
|
---|
| 31 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Interfaces;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Symbols;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis {
|
---|
| 36 | [StorableClass]
|
---|
| 37 | [Item("SymbolicTimeSeriesExpressionInterpreter", "Interpreter for symbolic expression trees representing time series forecast models.")]
|
---|
| 38 | public class SymbolicTimeSeriesExpressionInterpreter : NamedItem, ISymbolicTimeSeriesExpressionInterpreter {
|
---|
| 39 | private class OpCodes {
|
---|
| 40 | public const byte Add = 1;
|
---|
| 41 | public const byte Sub = 2;
|
---|
| 42 | public const byte Mul = 3;
|
---|
| 43 | public const byte Div = 4;
|
---|
| 44 |
|
---|
| 45 | public const byte Sin = 5;
|
---|
| 46 | public const byte Cos = 6;
|
---|
| 47 | public const byte Tan = 7;
|
---|
| 48 |
|
---|
| 49 | public const byte Log = 8;
|
---|
| 50 | public const byte Exp = 9;
|
---|
| 51 |
|
---|
| 52 | public const byte IfThenElse = 10;
|
---|
| 53 |
|
---|
| 54 | public const byte GT = 11;
|
---|
| 55 | public const byte LT = 12;
|
---|
| 56 |
|
---|
| 57 | public const byte AND = 13;
|
---|
| 58 | public const byte OR = 14;
|
---|
| 59 | public const byte NOT = 15;
|
---|
| 60 |
|
---|
| 61 |
|
---|
| 62 | public const byte Average = 16;
|
---|
| 63 |
|
---|
| 64 | public const byte Call = 17;
|
---|
| 65 |
|
---|
| 66 | public const byte Variable = 18;
|
---|
| 67 | public const byte LagVariable = 19;
|
---|
| 68 | public const byte Constant = 20;
|
---|
| 69 | public const byte Arg = 21;
|
---|
| 70 | public const byte Differential = 22;
|
---|
| 71 | public const byte Integral = 23;
|
---|
| 72 | public const byte MovingAverage = 24;
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | private Dictionary<Type, byte> symbolToOpcode = new Dictionary<Type, byte>() {
|
---|
| 76 | { typeof(Addition), OpCodes.Add },
|
---|
| 77 | { typeof(Subtraction), OpCodes.Sub },
|
---|
| 78 | { typeof(Multiplication), OpCodes.Mul },
|
---|
| 79 | { typeof(Division), OpCodes.Div },
|
---|
| 80 | { typeof(Sine), OpCodes.Sin },
|
---|
| 81 | { typeof(Cosine), OpCodes.Cos },
|
---|
| 82 | { typeof(Tangent), OpCodes.Tan },
|
---|
| 83 | { typeof(Logarithm), OpCodes.Log },
|
---|
| 84 | { typeof(Exponential), OpCodes.Exp },
|
---|
| 85 | { typeof(IfThenElse), OpCodes.IfThenElse },
|
---|
| 86 | { typeof(GreaterThan), OpCodes.GT },
|
---|
| 87 | { typeof(LessThan), OpCodes.LT },
|
---|
| 88 | { typeof(And), OpCodes.AND },
|
---|
| 89 | { typeof(Or), OpCodes.OR },
|
---|
| 90 | { typeof(Not), OpCodes.NOT},
|
---|
| 91 | { typeof(Average), OpCodes.Average},
|
---|
| 92 | { typeof(InvokeFunction), OpCodes.Call },
|
---|
| 93 | { typeof(HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable), OpCodes.Variable },
|
---|
| 94 | { typeof(LaggedVariable), OpCodes.LagVariable },
|
---|
| 95 | { typeof(IntegratedVariable), OpCodes.Integral },
|
---|
| 96 | { typeof(DerivativeVariable), OpCodes.Differential },
|
---|
| 97 | { typeof(MovingAverage), OpCodes.MovingAverage },
|
---|
| 98 | { typeof(Constant), OpCodes.Constant },
|
---|
| 99 | { typeof(Argument), OpCodes.Arg },
|
---|
| 100 | };
|
---|
| 101 | private const int ARGUMENT_STACK_SIZE = 1024;
|
---|
| 102 |
|
---|
| 103 | private Dataset dataset;
|
---|
| 104 | private int row;
|
---|
| 105 | private Instruction[] code;
|
---|
| 106 | private int pc;
|
---|
| 107 | private double[] argumentStack = new double[ARGUMENT_STACK_SIZE];
|
---|
| 108 | private int argStackPointer;
|
---|
| 109 | private Dictionary<int, double[]> estimatedTargetVariableValues;
|
---|
| 110 | private int currentPredictionHorizon;
|
---|
| 111 |
|
---|
| 112 | public override bool CanChangeName {
|
---|
| 113 | get { return false; }
|
---|
| 114 | }
|
---|
| 115 | public override bool CanChangeDescription {
|
---|
| 116 | get { return false; }
|
---|
| 117 | }
|
---|
[5275] | 118 | [StorableConstructor]
|
---|
| 119 | protected SymbolicTimeSeriesExpressionInterpreter(bool deserializing) : base(deserializing) { }
|
---|
| 120 | protected SymbolicTimeSeriesExpressionInterpreter(SymbolicTimeSeriesExpressionInterpreter original, Cloner cloner)
|
---|
| 121 | : base(original, cloner) {
|
---|
| 122 | }
|
---|
[4113] | 123 | public SymbolicTimeSeriesExpressionInterpreter()
|
---|
| 124 | : base() {
|
---|
| 125 | }
|
---|
[5275] | 126 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 127 | return new SymbolicTimeSeriesExpressionInterpreter(this, cloner);
|
---|
| 128 | }
|
---|
[4113] | 129 | #region ITimeSeriesExpressionInterpreter Members
|
---|
| 130 |
|
---|
| 131 | public IEnumerable<double[]> GetSymbolicExpressionTreeValues(SymbolicExpressionTree tree, Dataset dataset, IEnumerable<string> targetVariables, IEnumerable<int> rows, int predictionHorizon) {
|
---|
| 132 | this.dataset = dataset;
|
---|
| 133 | List<int> targetVariableIndexes = new List<int>();
|
---|
| 134 | estimatedTargetVariableValues = new Dictionary<int, double[]>();
|
---|
| 135 | foreach (string targetVariable in targetVariables) {
|
---|
| 136 | int index = dataset.GetVariableIndex(targetVariable);
|
---|
| 137 | targetVariableIndexes.Add(index);
|
---|
| 138 | estimatedTargetVariableValues.Add(index, new double[predictionHorizon]);
|
---|
| 139 | }
|
---|
| 140 | var compiler = new SymbolicExpressionTreeCompiler();
|
---|
| 141 | compiler.AddInstructionPostProcessingHook(PostProcessInstruction);
|
---|
| 142 | code = compiler.Compile(tree, MapSymbolToOpCode);
|
---|
| 143 |
|
---|
| 144 | foreach (var row in rows) {
|
---|
[4556] | 145 | // ResetVariableValues(dataset, row);
|
---|
[4113] | 146 | for (int step = 0; step < predictionHorizon; step++) {
|
---|
| 147 | this.row = row + step;
|
---|
| 148 | this.currentPredictionHorizon = step;
|
---|
| 149 | pc = 0;
|
---|
| 150 | argStackPointer = 0;
|
---|
| 151 | double[] estimatedValues = new double[tree.Root.SubTrees[0].SubTrees.Count];
|
---|
| 152 | int component = 0;
|
---|
| 153 | foreach (int targetVariableIndex in targetVariableIndexes) {
|
---|
| 154 | double estimatedValue = Evaluate();
|
---|
| 155 | estimatedTargetVariableValues[targetVariableIndex][step] = estimatedValue;
|
---|
| 156 | estimatedValues[component] = estimatedValue;
|
---|
| 157 | component++;
|
---|
| 158 | }
|
---|
| 159 | yield return estimatedValues;
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | public IEnumerable<double[]> GetScaledSymbolicExpressionTreeValues(SymbolicExpressionTree tree, Dataset dataset, IEnumerable<string> targetVariables, IEnumerable<int> rows, int predictionHorizon, double[] beta, double[] alpha) {
|
---|
| 165 | this.dataset = dataset;
|
---|
| 166 | List<int> targetVariableIndexes = new List<int>();
|
---|
| 167 | estimatedTargetVariableValues = new Dictionary<int, double[]>();
|
---|
| 168 | foreach (string targetVariable in targetVariables) {
|
---|
| 169 | int index = dataset.GetVariableIndex(targetVariable);
|
---|
| 170 | targetVariableIndexes.Add(index);
|
---|
| 171 | estimatedTargetVariableValues.Add(index, new double[predictionHorizon]);
|
---|
| 172 | }
|
---|
| 173 | var compiler = new SymbolicExpressionTreeCompiler();
|
---|
| 174 | compiler.AddInstructionPostProcessingHook(PostProcessInstruction);
|
---|
| 175 | code = compiler.Compile(tree, MapSymbolToOpCode);
|
---|
| 176 |
|
---|
| 177 | foreach (var row in rows) {
|
---|
[4556] | 178 | // ResetVariableValues(dataset, row);
|
---|
[4113] | 179 | for (int step = 0; step < predictionHorizon; step++) {
|
---|
| 180 | this.row = row + step;
|
---|
| 181 | this.currentPredictionHorizon = step;
|
---|
| 182 | pc = 0;
|
---|
| 183 | argStackPointer = 0;
|
---|
| 184 | double[] estimatedValues = new double[tree.Root.SubTrees[0].SubTrees.Count];
|
---|
| 185 | int component = 0;
|
---|
| 186 | foreach (int targetVariableIndex in targetVariableIndexes) {
|
---|
| 187 | double estimatedValue = Evaluate() * beta[component] + alpha[component];
|
---|
| 188 | estimatedTargetVariableValues[targetVariableIndex][step] = estimatedValue;
|
---|
| 189 | estimatedValues[component] = estimatedValue;
|
---|
| 190 | component++;
|
---|
| 191 | }
|
---|
| 192 | yield return estimatedValues;
|
---|
| 193 | }
|
---|
| 194 | }
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | #endregion
|
---|
| 198 |
|
---|
[4556] | 199 | //private void ResetVariableValues(Dataset dataset, int start) {
|
---|
| 200 | // foreach (var pair in estimatedTargetVariableValues) {
|
---|
| 201 | // int targetVariableIndex = pair.Key;
|
---|
| 202 | // double[] values = pair.Value;
|
---|
| 203 | // for (int i = 0; i < values.Length; i++) {
|
---|
| 204 | // values[i] = dataset[start + i, targetVariableIndex];
|
---|
| 205 | // }
|
---|
| 206 | // }
|
---|
| 207 | //}
|
---|
[4113] | 208 |
|
---|
| 209 | private Instruction PostProcessInstruction(Instruction instr) {
|
---|
[4556] | 210 | if (instr.opCode == OpCodes.Variable || instr.opCode == OpCodes.LagVariable ||
|
---|
[4475] | 211 | instr.opCode == OpCodes.Integral || instr.opCode == OpCodes.MovingAverage || instr.opCode == OpCodes.Differential) {
|
---|
[4113] | 212 | var variableTreeNode = instr.dynamicNode as VariableTreeNode;
|
---|
| 213 | instr.iArg0 = (ushort)dataset.GetVariableIndex(variableTreeNode.VariableName);
|
---|
[4556] | 214 | }
|
---|
[4113] | 215 | return instr;
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 | private byte MapSymbolToOpCode(SymbolicExpressionTreeNode treeNode) {
|
---|
| 219 | if (symbolToOpcode.ContainsKey(treeNode.Symbol.GetType()))
|
---|
| 220 | return symbolToOpcode[treeNode.Symbol.GetType()];
|
---|
| 221 | else
|
---|
| 222 | throw new NotSupportedException("Symbol: " + treeNode.Symbol);
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | private double Evaluate() {
|
---|
| 226 | Instruction currentInstr = code[pc++];
|
---|
| 227 | switch (currentInstr.opCode) {
|
---|
| 228 | case OpCodes.Add: {
|
---|
| 229 | double s = Evaluate();
|
---|
| 230 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
| 231 | s += Evaluate();
|
---|
| 232 | }
|
---|
| 233 | return s;
|
---|
| 234 | }
|
---|
| 235 | case OpCodes.Sub: {
|
---|
| 236 | double s = Evaluate();
|
---|
| 237 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
| 238 | s -= Evaluate();
|
---|
| 239 | }
|
---|
| 240 | if (currentInstr.nArguments == 1) s = -s;
|
---|
| 241 | return s;
|
---|
| 242 | }
|
---|
| 243 | case OpCodes.Mul: {
|
---|
| 244 | double p = Evaluate();
|
---|
| 245 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
| 246 | p *= Evaluate();
|
---|
| 247 | }
|
---|
| 248 | return p;
|
---|
| 249 | }
|
---|
| 250 | case OpCodes.Div: {
|
---|
| 251 | double p = Evaluate();
|
---|
| 252 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
| 253 | p /= Evaluate();
|
---|
| 254 | }
|
---|
| 255 | if (currentInstr.nArguments == 1) p = 1.0 / p;
|
---|
| 256 | return p;
|
---|
| 257 | }
|
---|
| 258 | case OpCodes.Average: {
|
---|
| 259 | double sum = Evaluate();
|
---|
| 260 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
| 261 | sum += Evaluate();
|
---|
| 262 | }
|
---|
| 263 | return sum / currentInstr.nArguments;
|
---|
| 264 | }
|
---|
| 265 | case OpCodes.Cos: {
|
---|
| 266 | return Math.Cos(Evaluate());
|
---|
| 267 | }
|
---|
| 268 | case OpCodes.Sin: {
|
---|
| 269 | return Math.Sin(Evaluate());
|
---|
| 270 | }
|
---|
| 271 | case OpCodes.Tan: {
|
---|
| 272 | return Math.Tan(Evaluate());
|
---|
| 273 | }
|
---|
| 274 | case OpCodes.Exp: {
|
---|
| 275 | return Math.Exp(Evaluate());
|
---|
| 276 | }
|
---|
| 277 | case OpCodes.Log: {
|
---|
| 278 | return Math.Log(Evaluate());
|
---|
| 279 | }
|
---|
| 280 | case OpCodes.IfThenElse: {
|
---|
| 281 | double condition = Evaluate();
|
---|
| 282 | double result;
|
---|
| 283 | if (condition > 0.0) {
|
---|
| 284 | result = Evaluate(); SkipBakedCode();
|
---|
| 285 | } else {
|
---|
| 286 | SkipBakedCode(); result = Evaluate();
|
---|
| 287 | }
|
---|
| 288 | return result;
|
---|
| 289 | }
|
---|
| 290 | case OpCodes.AND: {
|
---|
| 291 | double result = Evaluate();
|
---|
| 292 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
| 293 | if (result <= 0.0) SkipBakedCode();
|
---|
| 294 | else {
|
---|
| 295 | result = Evaluate();
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | return result <= 0.0 ? -1.0 : 1.0;
|
---|
| 299 | }
|
---|
| 300 | case OpCodes.OR: {
|
---|
| 301 | double result = Evaluate();
|
---|
| 302 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
| 303 | if (result > 0.0) SkipBakedCode();
|
---|
| 304 | else {
|
---|
| 305 | result = Evaluate();
|
---|
| 306 | }
|
---|
| 307 | }
|
---|
| 308 | return result > 0.0 ? 1.0 : -1.0;
|
---|
| 309 | }
|
---|
| 310 | case OpCodes.NOT: {
|
---|
| 311 | return -Evaluate();
|
---|
| 312 | }
|
---|
| 313 | case OpCodes.GT: {
|
---|
| 314 | double x = Evaluate();
|
---|
| 315 | double y = Evaluate();
|
---|
| 316 | if (x > y) return 1.0;
|
---|
| 317 | else return -1.0;
|
---|
| 318 | }
|
---|
| 319 | case OpCodes.LT: {
|
---|
| 320 | double x = Evaluate();
|
---|
| 321 | double y = Evaluate();
|
---|
| 322 | if (x < y) return 1.0;
|
---|
| 323 | else return -1.0;
|
---|
| 324 | }
|
---|
| 325 | case OpCodes.Call: {
|
---|
| 326 | // evaluate sub-trees
|
---|
| 327 | // push on argStack in reverse order
|
---|
| 328 | for (int i = 0; i < currentInstr.nArguments; i++) {
|
---|
| 329 | argumentStack[argStackPointer + currentInstr.nArguments - i] = Evaluate();
|
---|
| 330 | }
|
---|
| 331 | argStackPointer += currentInstr.nArguments;
|
---|
| 332 |
|
---|
| 333 | // save the pc
|
---|
| 334 | int nextPc = pc;
|
---|
| 335 | // set pc to start of function
|
---|
| 336 | pc = currentInstr.iArg0;
|
---|
| 337 | // evaluate the function
|
---|
| 338 | double v = Evaluate();
|
---|
| 339 |
|
---|
| 340 | // decrease the argument stack pointer by the number of arguments pushed
|
---|
| 341 | // to set the argStackPointer back to the original location
|
---|
| 342 | argStackPointer -= currentInstr.nArguments;
|
---|
| 343 |
|
---|
| 344 | // restore the pc => evaluation will continue at point after my subtrees
|
---|
| 345 | pc = nextPc;
|
---|
| 346 | return v;
|
---|
| 347 | }
|
---|
| 348 | case OpCodes.Arg: {
|
---|
| 349 | return argumentStack[argStackPointer - currentInstr.iArg0];
|
---|
| 350 | }
|
---|
| 351 | case OpCodes.Variable: {
|
---|
| 352 | var variableTreeNode = currentInstr.dynamicNode as VariableTreeNode;
|
---|
| 353 | return dataset[row, currentInstr.iArg0] * variableTreeNode.Weight;
|
---|
| 354 | }
|
---|
| 355 | case OpCodes.LagVariable: {
|
---|
| 356 | var lagVariableTreeNode = currentInstr.dynamicNode as LaggedVariableTreeNode;
|
---|
| 357 | int actualRow = row + lagVariableTreeNode.Lag;
|
---|
[4556] | 358 | if (actualRow < 0 || actualRow >= dataset.Rows + currentPredictionHorizon)
|
---|
[4113] | 359 | return double.NaN;
|
---|
| 360 | return GetVariableValue(currentInstr.iArg0, lagVariableTreeNode.Lag) * lagVariableTreeNode.Weight;
|
---|
| 361 | }
|
---|
| 362 | case OpCodes.MovingAverage: {
|
---|
| 363 | var movingAvgTreeNode = currentInstr.dynamicNode as MovingAverageTreeNode;
|
---|
[4556] | 364 | if (row + movingAvgTreeNode.MinTimeOffset < 0 || row + movingAvgTreeNode.MaxTimeOffset >= dataset.Rows + currentPredictionHorizon)
|
---|
[4113] | 365 | return double.NaN;
|
---|
| 366 | double sum = 0.0;
|
---|
| 367 | for (int relativeRow = movingAvgTreeNode.MinTimeOffset; relativeRow < movingAvgTreeNode.MaxTimeOffset; relativeRow++) {
|
---|
[4475] | 368 | sum += GetVariableValue(currentInstr.iArg0, relativeRow);
|
---|
[4113] | 369 | }
|
---|
[4475] | 370 | return movingAvgTreeNode.Weight * sum / (movingAvgTreeNode.MaxTimeOffset - movingAvgTreeNode.MinTimeOffset);
|
---|
[4113] | 371 | }
|
---|
| 372 | case OpCodes.Differential: {
|
---|
| 373 | var diffTreeNode = currentInstr.dynamicNode as DerivativeVariableTreeNode;
|
---|
[4556] | 374 | if (row + diffTreeNode.Lag - 2 < 0 || row + diffTreeNode.Lag >= dataset.Rows + currentPredictionHorizon)
|
---|
[4113] | 375 | return double.NaN;
|
---|
[4475] | 376 | double y_0 = GetVariableValue(currentInstr.iArg0, diffTreeNode.Lag);
|
---|
| 377 | double y_1 = GetVariableValue(currentInstr.iArg0, diffTreeNode.Lag - 1);
|
---|
| 378 | double y_2 = GetVariableValue(currentInstr.iArg0, diffTreeNode.Lag - 2);
|
---|
[4556] | 379 | return diffTreeNode.Weight * (y_0 - 4 * y_1 + 3 * y_2) / 2;
|
---|
[4113] | 380 | }
|
---|
| 381 | case OpCodes.Integral: {
|
---|
| 382 | var integralVarTreeNode = currentInstr.dynamicNode as IntegratedVariableTreeNode;
|
---|
[4556] | 383 | if (row + integralVarTreeNode.MinTimeOffset < 0 || row + integralVarTreeNode.MaxTimeOffset >= dataset.Rows + currentPredictionHorizon)
|
---|
[4113] | 384 | return double.NaN;
|
---|
| 385 | double sum = 0;
|
---|
| 386 | for (int relativeRow = integralVarTreeNode.MinTimeOffset; relativeRow < integralVarTreeNode.MaxTimeOffset; relativeRow++) {
|
---|
[4475] | 387 | sum += GetVariableValue(currentInstr.iArg0, relativeRow);
|
---|
[4113] | 388 | }
|
---|
[4475] | 389 | return integralVarTreeNode.Weight * sum;
|
---|
[4113] | 390 | }
|
---|
| 391 | case OpCodes.Constant: {
|
---|
| 392 | var constTreeNode = currentInstr.dynamicNode as ConstantTreeNode;
|
---|
| 393 | return constTreeNode.Value;
|
---|
| 394 | }
|
---|
| 395 | default: throw new NotSupportedException();
|
---|
| 396 | }
|
---|
| 397 | }
|
---|
| 398 |
|
---|
| 399 | private double GetVariableValue(int variableIndex, int timeoffset) {
|
---|
[4556] | 400 | if (currentPredictionHorizon + timeoffset >= 0) {
|
---|
| 401 | double[] values;
|
---|
| 402 | estimatedTargetVariableValues.TryGetValue(variableIndex, out values);
|
---|
| 403 | if (values != null) {
|
---|
| 404 | return values[currentPredictionHorizon + timeoffset];
|
---|
| 405 | }
|
---|
| 406 | }
|
---|
| 407 | if (row + timeoffset < 0 || row + timeoffset >= dataset.Rows) {
|
---|
| 408 | return double.NaN;
|
---|
[4113] | 409 | } else {
|
---|
| 410 | return dataset[row + timeoffset, variableIndex];
|
---|
| 411 | }
|
---|
| 412 | }
|
---|
| 413 |
|
---|
| 414 | // skips a whole branch
|
---|
| 415 | protected void SkipBakedCode() {
|
---|
| 416 | int i = 1;
|
---|
| 417 | while (i > 0) {
|
---|
| 418 | i += code[pc++].nArguments;
|
---|
| 419 | i--;
|
---|
| 420 | }
|
---|
| 421 | }
|
---|
| 422 | }
|
---|
| 423 | }
|
---|
| 424 |
|
---|