1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.SupportVectorMachine;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Optimization;
|
---|
33 | using HeuristicLab.Operators;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
35 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
36 | using System.Collections.Generic;
|
---|
37 | using HeuristicLab.Problems.DataAnalysis.Regression;
|
---|
38 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Interfaces;
|
---|
39 |
|
---|
40 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Evaluators {
|
---|
41 | [Item("SymbolicTimeSeriesPrognosisScaledNormalizedMseEvaluator", "")]
|
---|
42 | [StorableClass]
|
---|
43 | public class SymbolicTimeSeriesPrognosisScaledNormalizedMseEvaluator : SingleSuccessorOperator, ISingleObjectiveSymbolicTimeSeriesPrognosisEvaluator {
|
---|
44 | private const string RandomParameterName = "Random";
|
---|
45 | private const string DataAnalysisProblemDataParameterName = "MultiVariateDataAnalysisProblemData";
|
---|
46 | private const string TimeSeriesExpressionInterpreterParameterName = "TimeSeriesExpressionInterpreter";
|
---|
47 | private const string TimeSeriesPrognosisModelParameterName = "TimeSeriesPrognosisModel";
|
---|
48 | private const string PredictionHorizontParameterName = "PredictionHorizon";
|
---|
49 | private const string ConditionVariableParameterName = "ConditionVariableName";
|
---|
50 | private const string SamplesStartParameterName = "SamplesStart";
|
---|
51 | private const string SamplesEndParameterName = "SamplesEnd";
|
---|
52 | private const string AlphaParameterName = "Alpha";
|
---|
53 | private const string BetaParameterName = "Beta";
|
---|
54 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
55 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
56 | private const string QualityParameterName = "Quality";
|
---|
57 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
58 |
|
---|
59 | #region parameter properties
|
---|
60 | public ILookupParameter<IRandom> RandomParameter {
|
---|
61 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
62 | }
|
---|
63 | public ILookupParameter<MultiVariateDataAnalysisProblemData> ProblemDataParameter {
|
---|
64 | get { return (ILookupParameter<MultiVariateDataAnalysisProblemData>)Parameters[DataAnalysisProblemDataParameterName]; }
|
---|
65 | }
|
---|
66 | public ILookupParameter<ISymbolicTimeSeriesExpressionInterpreter> TimeSeriesExpressionInterpreterParameter {
|
---|
67 | get { return (ILookupParameter<ISymbolicTimeSeriesExpressionInterpreter>)Parameters[TimeSeriesExpressionInterpreterParameterName]; }
|
---|
68 | }
|
---|
69 | public IValueLookupParameter<IntValue> PredictionHorizonParameter {
|
---|
70 | get { return (IValueLookupParameter<IntValue>)Parameters[PredictionHorizontParameterName]; }
|
---|
71 | }
|
---|
72 | public OptionalValueParameter<StringValue> ConditionVariableNameParameter {
|
---|
73 | get { return (OptionalValueParameter<StringValue>)Parameters[ConditionVariableParameterName]; }
|
---|
74 | }
|
---|
75 | public IValueLookupParameter<IntValue> SamplesStartParameter {
|
---|
76 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
|
---|
77 | }
|
---|
78 | public IValueLookupParameter<IntValue> SamplesEndParameter {
|
---|
79 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
|
---|
80 | }
|
---|
81 | public ILookupParameter<SymbolicExpressionTree> TimeSeriesPrognosisModelParameter {
|
---|
82 | get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[TimeSeriesPrognosisModelParameterName]; }
|
---|
83 | }
|
---|
84 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
85 | get { return (ILookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
|
---|
86 | }
|
---|
87 | public ILookupParameter<DoubleArray> AlphaParameter {
|
---|
88 | get { return (ILookupParameter<DoubleArray>)Parameters[AlphaParameterName]; }
|
---|
89 | }
|
---|
90 | public ILookupParameter<DoubleArray> BetaParameter {
|
---|
91 | get { return (ILookupParameter<DoubleArray>)Parameters[BetaParameterName]; }
|
---|
92 | }
|
---|
93 | public IValueLookupParameter<DoubleArray> LowerEstimationLimitParameter {
|
---|
94 | get { return (IValueLookupParameter<DoubleArray>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
95 | }
|
---|
96 | public IValueLookupParameter<DoubleArray> UpperEstimationLimitParameter {
|
---|
97 | get { return (IValueLookupParameter<DoubleArray>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
98 | }
|
---|
99 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
100 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
101 | }
|
---|
102 |
|
---|
103 | #endregion
|
---|
104 | #region properties
|
---|
105 | public IRandom Random {
|
---|
106 | get { return RandomParameter.ActualValue; }
|
---|
107 | }
|
---|
108 | public MultiVariateDataAnalysisProblemData ProblemData {
|
---|
109 | get { return ProblemDataParameter.ActualValue; }
|
---|
110 | }
|
---|
111 | public ISymbolicTimeSeriesExpressionInterpreter TimeSeriesExpressionInterpreter {
|
---|
112 | get { return TimeSeriesExpressionInterpreterParameter.ActualValue; }
|
---|
113 | }
|
---|
114 | public IntValue PredictionHorizon {
|
---|
115 | get { return PredictionHorizonParameter.ActualValue; }
|
---|
116 | }
|
---|
117 | public StringValue ConditionVariableName {
|
---|
118 | get { return ConditionVariableNameParameter.Value; }
|
---|
119 | }
|
---|
120 | public IntValue SamplesStart {
|
---|
121 | get { return SamplesStartParameter.ActualValue; }
|
---|
122 | }
|
---|
123 | public IntValue SamplesEnd {
|
---|
124 | get { return SamplesEndParameter.ActualValue; }
|
---|
125 | }
|
---|
126 | public DoubleArray LowerEstimationLimit {
|
---|
127 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
128 | }
|
---|
129 | public DoubleArray UpperEstimationLimit {
|
---|
130 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
131 | }
|
---|
132 | public SymbolicExpressionTree TimeSeriesPrognosisModel {
|
---|
133 | get { return TimeSeriesPrognosisModelParameter.ActualValue; }
|
---|
134 | }
|
---|
135 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
136 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
137 | }
|
---|
138 | #endregion
|
---|
139 |
|
---|
140 | public SymbolicTimeSeriesPrognosisScaledNormalizedMseEvaluator()
|
---|
141 | : base() {
|
---|
142 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "A random number generator."));
|
---|
143 | Parameters.Add(new LookupParameter<MultiVariateDataAnalysisProblemData>(DataAnalysisProblemDataParameterName, "The data analysis problem data to use for training."));
|
---|
144 | Parameters.Add(new LookupParameter<ISymbolicTimeSeriesExpressionInterpreter>(TimeSeriesExpressionInterpreterParameterName, "The interpreter that should be used to evaluate the time series model represented as a symbolic expression tree."));
|
---|
145 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The first index of the data set partition to use for training."));
|
---|
146 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The last index of the data set partition to use for training."));
|
---|
147 | Parameters.Add(new ValueLookupParameter<IntValue>(PredictionHorizontParameterName, "The number of time steps for which to create a forecast."));
|
---|
148 | Parameters.Add(new ValueLookupParameter<DoubleArray>(LowerEstimationLimitParameterName, "The lower limit for estimated values."));
|
---|
149 | Parameters.Add(new ValueLookupParameter<DoubleArray>(UpperEstimationLimitParameterName, "The upper limit for estimated values."));
|
---|
150 | Parameters.Add(new OptionalValueParameter<StringValue>(ConditionVariableParameterName, "The name of the condition variable indicating if a row should be considered for evaluation or not."));
|
---|
151 | Parameters.Add(new LookupParameter<SymbolicExpressionTree>(TimeSeriesPrognosisModelParameterName, "The time series prognosis model encoded as a symbolic expression tree."));
|
---|
152 | Parameters.Add(new LookupParameter<DoubleValue>(QualityParameterName, "The quality of the time series prognosis model encoded as a symbolic expression tree."));
|
---|
153 | Parameters.Add(new LookupParameter<DoubleArray>(AlphaParameterName, "The alpha parameter for linear scaling based on one step predictions."));
|
---|
154 | Parameters.Add(new LookupParameter<DoubleArray>(BetaParameterName, "The beta parameter for linear scaling based on one step predictions."));
|
---|
155 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
156 | }
|
---|
157 |
|
---|
158 | public override IOperation Apply() {
|
---|
159 | double[] alpha, beta;
|
---|
160 | double quality;
|
---|
161 | string conditionVariableName = ConditionVariableName == null ? null : ConditionVariableName.Value;
|
---|
162 | int nRows = (int)Math.Ceiling((SamplesEnd.Value - SamplesStart.Value) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
163 |
|
---|
164 | IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers((uint)Random.Next(), SamplesStart.Value, SamplesEnd.Value, nRows);
|
---|
165 | CalculateScalingParameters(TimeSeriesPrognosisModel, ProblemData, TimeSeriesExpressionInterpreter,
|
---|
166 | conditionVariableName, rows,
|
---|
167 | out beta, out alpha);
|
---|
168 |
|
---|
169 | quality = Evaluate(TimeSeriesPrognosisModel, ProblemData, TimeSeriesExpressionInterpreter,
|
---|
170 | conditionVariableName, rows, PredictionHorizon.Value,
|
---|
171 | LowerEstimationLimit, UpperEstimationLimit,
|
---|
172 | beta, alpha);
|
---|
173 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
174 | AlphaParameter.ActualValue = new DoubleArray(alpha);
|
---|
175 | BetaParameter.ActualValue = new DoubleArray(beta);
|
---|
176 | return base.Apply();
|
---|
177 | }
|
---|
178 |
|
---|
179 | public static double Evaluate(SymbolicExpressionTree tree, MultiVariateDataAnalysisProblemData problemData,
|
---|
180 | ISymbolicTimeSeriesExpressionInterpreter interpreter,
|
---|
181 | IEnumerable<int> rows, int predictionHorizon,
|
---|
182 | DoubleArray lowerEstimationLimit, DoubleArray upperEstimationLimit,
|
---|
183 | double[] beta, double[] alpha) {
|
---|
184 | return Evaluate(tree, problemData, interpreter, null, rows, predictionHorizon, lowerEstimationLimit, upperEstimationLimit, beta, alpha);
|
---|
185 | }
|
---|
186 |
|
---|
187 | public static double Evaluate(SymbolicExpressionTree tree, MultiVariateDataAnalysisProblemData problemData,
|
---|
188 | ISymbolicTimeSeriesExpressionInterpreter interpreter, string conditionVariableName,
|
---|
189 | IEnumerable<int> rows, int predictionHorizon,
|
---|
190 | DoubleArray lowerEstimationLimit, DoubleArray upperEstimationLimit,
|
---|
191 | double[] beta, double[] alpha) {
|
---|
192 | if (conditionVariableName != null) {
|
---|
193 | rows = from row in rows
|
---|
194 | where !problemData.Dataset[conditionVariableName, row].IsAlmost(0.0)
|
---|
195 | select row;
|
---|
196 | }
|
---|
197 | IEnumerable<string> selectedTargetVariables = from targetVariable in problemData.TargetVariables
|
---|
198 | where problemData.TargetVariables.ItemChecked(targetVariable)
|
---|
199 | select targetVariable.Value;
|
---|
200 |
|
---|
201 | IEnumerable<double[]> estimatedValues =
|
---|
202 | interpreter.GetScaledSymbolicExpressionTreeValues(tree, problemData.Dataset, selectedTargetVariables,
|
---|
203 | rows, predictionHorizon, beta, alpha);
|
---|
204 |
|
---|
205 | IEnumerable<double[]> originalValues = from row in rows
|
---|
206 | from step in Enumerable.Range(0, predictionHorizon)
|
---|
207 | select (from targetVariable in selectedTargetVariables
|
---|
208 | select problemData.Dataset[targetVariable, row + step]).ToArray();
|
---|
209 |
|
---|
210 | List<OnlineNormalizedMeanSquaredErrorEvaluator> evaluators = new List<OnlineNormalizedMeanSquaredErrorEvaluator>();
|
---|
211 | foreach (string targetVariable in selectedTargetVariables)
|
---|
212 | evaluators.Add(new OnlineNormalizedMeanSquaredErrorEvaluator());
|
---|
213 |
|
---|
214 | var estimatedValuesEnumerator = estimatedValues.GetEnumerator();
|
---|
215 | var originalValuesEnumerator = originalValues.GetEnumerator();
|
---|
216 | while (originalValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext()) {
|
---|
217 | double[] original = originalValuesEnumerator.Current;
|
---|
218 | double[] estimated = estimatedValuesEnumerator.Current;
|
---|
219 | for (int i = 0; i < evaluators.Count; i++) {
|
---|
220 | if (double.IsNaN(estimated[i])) estimated[i] = upperEstimationLimit[i];
|
---|
221 | else estimated[i] = Math.Min(upperEstimationLimit[i], Math.Max(lowerEstimationLimit[i], estimated[i]));
|
---|
222 | evaluators[i].Add(original[i], estimated[i]);
|
---|
223 | }
|
---|
224 | }
|
---|
225 |
|
---|
226 | double quality = evaluators.Select(x => x.NormalizedMeanSquaredError).Sum();
|
---|
227 | return quality;
|
---|
228 | }
|
---|
229 |
|
---|
230 | public static void CalculateScalingParameters(SymbolicExpressionTree tree, MultiVariateDataAnalysisProblemData problemData,
|
---|
231 | ISymbolicTimeSeriesExpressionInterpreter interpreter,
|
---|
232 | IEnumerable<int> rows,
|
---|
233 | out double[] betas, out double[] alphas) {
|
---|
234 | CalculateScalingParameters(tree, problemData, interpreter, null, rows, out betas, out alphas);
|
---|
235 | }
|
---|
236 |
|
---|
237 | public static void CalculateScalingParameters(SymbolicExpressionTree tree, MultiVariateDataAnalysisProblemData problemData,
|
---|
238 | ISymbolicTimeSeriesExpressionInterpreter interpreter, string conditionVariableName,
|
---|
239 | IEnumerable<int> rows, out double[] betas, out double[] alphas) {
|
---|
240 | IEnumerable<string> selectedTargetVariables = from item in problemData.TargetVariables
|
---|
241 | where problemData.TargetVariables.ItemChecked(item)
|
---|
242 | select item.Value;
|
---|
243 | int dimension = selectedTargetVariables.Count();
|
---|
244 |
|
---|
245 | if (conditionVariableName != null) {
|
---|
246 | rows = from row in rows
|
---|
247 | where !problemData.Dataset[conditionVariableName, row].IsAlmost(0.0)
|
---|
248 | select row;
|
---|
249 | }
|
---|
250 |
|
---|
251 | IEnumerable<double[]> oneStepPredictions =
|
---|
252 | interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, selectedTargetVariables, rows, 1);
|
---|
253 | IEnumerable<double[]> originalValues = from row in rows
|
---|
254 | select (from targetVariable in selectedTargetVariables
|
---|
255 | select problemData.Dataset[targetVariable, row]).ToArray();
|
---|
256 |
|
---|
257 | alphas = new double[dimension];
|
---|
258 | betas = new double[dimension];
|
---|
259 | int[] cnt = new int[dimension];
|
---|
260 | List<OnlineMeanAndVarianceCalculator> estimatedVarianceEvaluators = new List<OnlineMeanAndVarianceCalculator>();
|
---|
261 | List<OnlineCovarianceEvaluator> covarianceEvaluators = new List<OnlineCovarianceEvaluator>();
|
---|
262 | List<OnlineMeanAndVarianceCalculator> originalMeanCalculators = new List<OnlineMeanAndVarianceCalculator>();
|
---|
263 | foreach (var selectedTargetVariable in selectedTargetVariables) {
|
---|
264 | estimatedVarianceEvaluators.Add(new OnlineMeanAndVarianceCalculator());
|
---|
265 | covarianceEvaluators.Add(new OnlineCovarianceEvaluator());
|
---|
266 | originalMeanCalculators.Add(new OnlineMeanAndVarianceCalculator());
|
---|
267 | }
|
---|
268 | var estimatedEnumerator = oneStepPredictions.GetEnumerator();
|
---|
269 | var originalEnumerator = originalValues.GetEnumerator();
|
---|
270 | while (estimatedEnumerator.MoveNext() & originalEnumerator.MoveNext()) {
|
---|
271 | double[] original = originalEnumerator.Current;
|
---|
272 | double[] estimated = estimatedEnumerator.Current;
|
---|
273 | for (int component = 0; component < dimension; component++) {
|
---|
274 | if (IsValidValue(original[component]) && IsValidValue(estimated[component])) {
|
---|
275 | cnt[component]++;
|
---|
276 | estimatedVarianceEvaluators[component].Add(estimated[component]);
|
---|
277 | covarianceEvaluators[component].Add(original[component], estimated[component]);
|
---|
278 | originalMeanCalculators[component].Add(original[component]);
|
---|
279 | }
|
---|
280 | }
|
---|
281 | }
|
---|
282 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())
|
---|
283 | throw new InvalidOperationException("Number of elements in estimated and original series doesn't match.");
|
---|
284 | for (int component = 0; component < dimension; component++) {
|
---|
285 | if (cnt[component] < 2) {
|
---|
286 | alphas[component] = 0;
|
---|
287 | betas[component] = 1;
|
---|
288 | } else {
|
---|
289 | if (estimatedVarianceEvaluators[component].Variance.IsAlmost(0.0))
|
---|
290 | betas[component] = 1;
|
---|
291 | else
|
---|
292 | betas[component] = covarianceEvaluators[component].Covariance / estimatedVarianceEvaluators[component].Variance;
|
---|
293 |
|
---|
294 | alphas[component] = originalMeanCalculators[component].Mean - betas[component] * estimatedVarianceEvaluators[component].Mean;
|
---|
295 | }
|
---|
296 | }
|
---|
297 | }
|
---|
298 |
|
---|
299 | private static bool IsValidValue(double d) {
|
---|
300 | return !double.IsInfinity(d) && !double.IsNaN(d) && d > -1.0E07 && d < 1.0E07; // don't consider very large or very small values for scaling
|
---|
301 | }
|
---|
302 | }
|
---|
303 | }
|
---|