1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.SupportVectorMachine;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Optimization;
|
---|
33 | using HeuristicLab.Operators;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
35 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
36 | using System.Collections.Generic;
|
---|
37 | using HeuristicLab.Problems.DataAnalysis.Regression;
|
---|
38 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Interfaces;
|
---|
39 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.Evaluators;
|
---|
40 |
|
---|
41 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Evaluators {
|
---|
42 | [Item("SymbolicTimeSeriesPrognosisScaledNormalizedFractionalDistanceEvaluator", "")]
|
---|
43 | [StorableClass]
|
---|
44 | public class SymbolicTimeSeriesPrognosisScaledNormalizedFractionalDistanceEvaluator : SymbolicTimeSeriesPrognosisEvaluator {
|
---|
45 | public ValueParameter<DoubleValue> DimensionParameter {
|
---|
46 | get { return (ValueParameter<DoubleValue>)Parameters["Dimension"]; }
|
---|
47 | }
|
---|
48 | public DoubleValue Dimension {
|
---|
49 | get { return DimensionParameter.Value; }
|
---|
50 | set { DimensionParameter.Value = value; }
|
---|
51 | }
|
---|
52 | [StorableConstructor]
|
---|
53 | protected SymbolicTimeSeriesPrognosisScaledNormalizedFractionalDistanceEvaluator(bool deserializing) : base(deserializing) { }
|
---|
54 | protected SymbolicTimeSeriesPrognosisScaledNormalizedFractionalDistanceEvaluator(SymbolicTimeSeriesPrognosisScaledNormalizedFractionalDistanceEvaluator original, Cloner cloner)
|
---|
55 | : base(original, cloner) {
|
---|
56 | }
|
---|
57 | public SymbolicTimeSeriesPrognosisScaledNormalizedFractionalDistanceEvaluator()
|
---|
58 | : base() {
|
---|
59 | Parameters.Add(new ValueParameter<DoubleValue>("Dimension", "The dimension parameter for the fractional distance metric (Sum(x_i-y_i)^(1/d))^d). d=0.5 is equivalent to Euclidian distance.", new DoubleValue(0.5)));
|
---|
60 | }
|
---|
61 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
62 | return new SymbolicTimeSeriesPrognosisScaledNormalizedFractionalDistanceEvaluator(this, cloner);
|
---|
63 | }
|
---|
64 | public override double Evaluate(SymbolicExpressionTree tree, MultiVariateDataAnalysisProblemData problemData, ISymbolicTimeSeriesExpressionInterpreter interpreter, IEnumerable<int> rows, int predictionHorizon, DoubleArray lowerEstimationLimit, DoubleArray upperEstimationLimit) {
|
---|
65 | return Calculate(tree, problemData, interpreter, rows, predictionHorizon, Dimension.Value, lowerEstimationLimit, upperEstimationLimit);
|
---|
66 | }
|
---|
67 |
|
---|
68 | public static double Calculate(SymbolicExpressionTree tree, MultiVariateDataAnalysisProblemData problemData, ISymbolicTimeSeriesExpressionInterpreter interpreter, IEnumerable<int> rows, int predictionHorizon, double fractionalDimension, DoubleArray lowerEstimationLimit, DoubleArray upperEstimationLimit) {
|
---|
69 | double[] alpha, beta;
|
---|
70 | double quality;
|
---|
71 |
|
---|
72 | Dataset dataset = problemData.Dataset;
|
---|
73 | // calculate scaling parameters based on one-step-predictions
|
---|
74 | IEnumerable<string> selectedTargetVariables = (from item in problemData.TargetVariables
|
---|
75 | where problemData.TargetVariables.ItemChecked(item)
|
---|
76 | select item.Value).ToArray();
|
---|
77 | int dimension = selectedTargetVariables.Count();
|
---|
78 |
|
---|
79 | IEnumerable<int> selectedTargetVariableIndexes = (from targetVariable in selectedTargetVariables
|
---|
80 | select dataset.GetVariableIndex(targetVariable)).ToArray();
|
---|
81 | IEnumerable<IEnumerable<double>> oneStepPredictions =
|
---|
82 | interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, selectedTargetVariables, rows, 1).Cast<IEnumerable<double>>();
|
---|
83 | IEnumerable<IEnumerable<double>> originalValues = from row in rows
|
---|
84 | select (from targetVariableIndex in selectedTargetVariableIndexes
|
---|
85 | select dataset[row, targetVariableIndex]);
|
---|
86 | alpha = new double[dimension];
|
---|
87 | beta = new double[dimension];
|
---|
88 |
|
---|
89 | CalculateScalingParameters(originalValues, oneStepPredictions, ref beta, ref alpha);
|
---|
90 |
|
---|
91 | // calculate the quality for the full horizon
|
---|
92 | quality = CalculateWithScaling(tree, problemData, interpreter,
|
---|
93 | rows, predictionHorizon, fractionalDimension,
|
---|
94 | lowerEstimationLimit, upperEstimationLimit,
|
---|
95 | beta, alpha);
|
---|
96 | return quality;
|
---|
97 | }
|
---|
98 |
|
---|
99 | public static double CalculateWithScaling(SymbolicExpressionTree tree, MultiVariateDataAnalysisProblemData problemData,
|
---|
100 | ISymbolicTimeSeriesExpressionInterpreter interpreter,
|
---|
101 | IEnumerable<int> rows, int predictionHorizon, double fractionalDimension,
|
---|
102 | DoubleArray lowerEstimationLimit, DoubleArray upperEstimationLimit,
|
---|
103 | double[] beta, double[] alpha) {
|
---|
104 | Dataset dataset = problemData.Dataset;
|
---|
105 | IEnumerable<string> selectedTargetVariables = (from targetVariable in problemData.TargetVariables
|
---|
106 | where problemData.TargetVariables.ItemChecked(targetVariable)
|
---|
107 | select targetVariable.Value).ToArray();
|
---|
108 | IEnumerable<int> selectedTargetVariableIndexes = (from targetVariable in selectedTargetVariables
|
---|
109 | select dataset.GetVariableIndex(targetVariable)).ToArray();
|
---|
110 |
|
---|
111 | IEnumerable<double[]> estimatedValues =
|
---|
112 | interpreter.GetScaledSymbolicExpressionTreeValues(tree, dataset, selectedTargetVariables,
|
---|
113 | rows, predictionHorizon, beta, alpha);
|
---|
114 |
|
---|
115 | IEnumerable<IEnumerable<double>> originalValues = from row in rows
|
---|
116 | from step in Enumerable.Range(0, predictionHorizon)
|
---|
117 | select (from targetVariableIndex in selectedTargetVariableIndexes
|
---|
118 | select dataset[row + step, targetVariableIndex]);
|
---|
119 |
|
---|
120 | var evaluator = new OnlineMeanFractionalDistanceEvaluator(fractionalDimension);
|
---|
121 |
|
---|
122 | var estimatedValuesEnumerator = estimatedValues.GetEnumerator();
|
---|
123 | var originalValuesEnumerator = originalValues.GetEnumerator();
|
---|
124 | while (originalValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext()) {
|
---|
125 | IEnumerable<double> original = originalValuesEnumerator.Current;
|
---|
126 | double[] estimated = estimatedValuesEnumerator.Current;
|
---|
127 | for (int i = 0; i < estimated.Length; i++) {
|
---|
128 | if (double.IsNaN(estimated[i])) estimated[i] = upperEstimationLimit[i];
|
---|
129 | else estimated[i] = Math.Min(upperEstimationLimit[i], Math.Max(lowerEstimationLimit[i], estimated[i]));
|
---|
130 | }
|
---|
131 | evaluator.Add(original, estimated);
|
---|
132 | }
|
---|
133 |
|
---|
134 | double quality = evaluator.Value;
|
---|
135 | return quality;
|
---|
136 | }
|
---|
137 |
|
---|
138 | public static void CalculateScalingParameters(IEnumerable<IEnumerable<double>> originalValues, IEnumerable<IEnumerable<double>> estimatedValues, ref double[] beta, ref double[] alpha) {
|
---|
139 | List<OnlineLinearScalingCalculator> linearScalingCalculators = new List<OnlineLinearScalingCalculator>();
|
---|
140 | // initialize lists
|
---|
141 | int dimension = originalValues.First().Count();
|
---|
142 | for (int i = 0; i < dimension; i++) {
|
---|
143 | linearScalingCalculators.Add(new OnlineLinearScalingCalculator());
|
---|
144 | }
|
---|
145 |
|
---|
146 | var estimatedEnumerator = estimatedValues.GetEnumerator();
|
---|
147 | var originalEnumerator = originalValues.GetEnumerator();
|
---|
148 | // foreach row vector in both series
|
---|
149 | while (estimatedEnumerator.MoveNext() & originalEnumerator.MoveNext()) {
|
---|
150 | IEnumerable<double> original = originalEnumerator.Current;
|
---|
151 | IEnumerable<double> estimated = estimatedEnumerator.Current;
|
---|
152 | var originalComponentValuesEnumerator = original.GetEnumerator();
|
---|
153 | var estimatedComponentValuesEnumerator = estimated.GetEnumerator();
|
---|
154 |
|
---|
155 | int component = 0;
|
---|
156 | // for each component in both row vectors
|
---|
157 | while (originalComponentValuesEnumerator.MoveNext() & estimatedComponentValuesEnumerator.MoveNext() && component < dimension) {
|
---|
158 | if (IsValidValue(originalComponentValuesEnumerator.Current) && IsValidValue(estimatedComponentValuesEnumerator.Current)) {
|
---|
159 | linearScalingCalculators[component].Add(originalComponentValuesEnumerator.Current, estimatedComponentValuesEnumerator.Current);
|
---|
160 | }
|
---|
161 | component++;
|
---|
162 | }
|
---|
163 | // check if both row vectors are finished
|
---|
164 | if (originalComponentValuesEnumerator.MoveNext() | estimatedComponentValuesEnumerator.MoveNext() || component < dimension) {
|
---|
165 | throw new ArgumentException("Number of elements in original and estimated row vectors does not match.");
|
---|
166 | }
|
---|
167 | }
|
---|
168 |
|
---|
169 | // check if both series are finished
|
---|
170 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())
|
---|
171 | throw new InvalidOperationException("Number of elements in estimated and original series doesn't match.");
|
---|
172 |
|
---|
173 | // get alpha and beta for each component
|
---|
174 | for (int component = 0; component < dimension; component++) {
|
---|
175 | alpha[component] = linearScalingCalculators[component].Alpha;
|
---|
176 | beta[component] = linearScalingCalculators[component].Beta;
|
---|
177 | }
|
---|
178 | }
|
---|
179 |
|
---|
180 | private static bool IsValidValue(double d) {
|
---|
181 | return !double.IsInfinity(d) && !double.IsNaN(d) && d > -1.0E07 && d < 1.0E07; // don't consider very large or very small values for scaling
|
---|
182 | }
|
---|
183 | }
|
---|
184 | }
|
---|