1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Operators;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
33 | using System.Collections.Generic;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis;
|
---|
36 | using System;
|
---|
37 |
|
---|
38 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
39 | using HeuristicLab.Problems.DataAnalysis.Regression;
|
---|
40 | using HeuristicLab.Analysis;
|
---|
41 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Evaluators;
|
---|
42 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic;
|
---|
43 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Interfaces;
|
---|
44 |
|
---|
45 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Analyzers {
|
---|
46 | /// <summary>
|
---|
47 | /// An operator that analyzes the validation best scaled symbolic time series prognosis solution.
|
---|
48 | /// </summary>
|
---|
49 | [Item("ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer", "An operator that analyzes the validation best scaled symbolic time series prognosis solution.")]
|
---|
50 | [StorableClass]
|
---|
51 | public sealed class ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
52 | private const string RandomParameterName = "Random";
|
---|
53 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
54 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
55 | private const string EvaluatorParameterName = "Evaluator";
|
---|
56 | private const string MaximizationParameterName = "Maximization";
|
---|
57 | private const string ProblemDataParameterName = "ProblemData";
|
---|
58 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
59 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
60 | private const string QualityParameterName = "Quality";
|
---|
61 | private const string ScaledQualityParameterName = "ScaledQuality";
|
---|
62 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
63 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
64 | private const string ValidationPredictionHorizonParameterName = "ValidationPredictionHorizon";
|
---|
65 | private const string ModelPredictionHorizonParameterName = "ModelPredictionHorizon";
|
---|
66 | private const string ConditionVariableParameterName = "ConditionVariableName";
|
---|
67 | private const string ResultsParameterName = "Results";
|
---|
68 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
69 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
70 |
|
---|
71 | private const string BestSolutionParameterName = "Best solution (validation)";
|
---|
72 | private const string BestSolutionQualityParameterName = "Best solution quality (validation)";
|
---|
73 | private const string CurrentBestValidationQualityParameterName = "Current best validation quality";
|
---|
74 | private const string BestSolutionQualityValuesParameterName = "Validation Quality";
|
---|
75 | private const string BestKnownQualityParameterName = "BestKnownQuality";
|
---|
76 | private const string GenerationsParameterName = "Generations";
|
---|
77 |
|
---|
78 | private const string BestSolutionMeanSquaredErrorTrainingParameterName = "Best validation solution mean squared error (training)";
|
---|
79 | private const string BestSolutionMeanSquaredErrorTestParameterName = "Best validation solution mean squared error (test)";
|
---|
80 | private const string BestSolutionRSquaredTrainingParameterName = "Best validation solution R² (training)";
|
---|
81 | private const string BestSolutionRSquaredTestParameterName = "Best validation solution R² (test)";
|
---|
82 | private const string BestSolutionDirectionalSymmetryTrainingParameterName = "Best validation solution directional symmetry (training)";
|
---|
83 | private const string BestSolutionDirectionalSymmetryTestParameterName = "Best validation solution directional symmetry (test)";
|
---|
84 | private const string BestSolutionTheilsUTrainingParameterName = "Best validation solution Theil's U (training)";
|
---|
85 | private const string BestSolutionTheilsUTestParameterName = "Best validation solution Theil's U (test)";
|
---|
86 | private const string BestSolutionTheilsUTrendTrainingParameterName = "Best validation solution Theil's U with trend (training)";
|
---|
87 | private const string BestSolutionTheilsUTrendTestParameterName = "Best validation solution Theil's U with trend (test)";
|
---|
88 |
|
---|
89 | #region parameter properties
|
---|
90 | public ILookupParameter<IRandom> RandomParameter {
|
---|
91 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
92 | }
|
---|
93 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
94 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
95 | }
|
---|
96 | public OptionalValueParameter<StringValue> ConditionVariableNameParameter {
|
---|
97 | get { return (OptionalValueParameter<StringValue>)Parameters[ConditionVariableParameterName]; }
|
---|
98 | }
|
---|
99 | public IValueLookupParameter<ISymbolicTimeSeriesExpressionInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
100 | get { return (IValueLookupParameter<ISymbolicTimeSeriesExpressionInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
101 | }
|
---|
102 | public IValueLookupParameter<MultiVariateDataAnalysisProblemData> ProblemDataParameter {
|
---|
103 | get { return (IValueLookupParameter<MultiVariateDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
104 | }
|
---|
105 | public ILookupParameter<ISingleObjectiveSymbolicTimeSeriesPrognosisEvaluator> EvaluatorParameter {
|
---|
106 | get { return (ILookupParameter<ISingleObjectiveSymbolicTimeSeriesPrognosisEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
107 | }
|
---|
108 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
109 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
110 | }
|
---|
111 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
112 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
113 | }
|
---|
114 | public IValueLookupParameter<DoubleArray> UpperEstimationLimitParameter {
|
---|
115 | get { return (IValueLookupParameter<DoubleArray>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
116 | }
|
---|
117 | public IValueLookupParameter<DoubleArray> LowerEstimationLimitParameter {
|
---|
118 | get { return (IValueLookupParameter<DoubleArray>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
119 | }
|
---|
120 | public IValueLookupParameter<IntValue> ValidationPredictionHorizonParameter {
|
---|
121 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationPredictionHorizonParameterName]; }
|
---|
122 | }
|
---|
123 | public IValueLookupParameter<IntValue> ModelPredictionHorizonParameter {
|
---|
124 | get { return (IValueLookupParameter<IntValue>)Parameters[ModelPredictionHorizonParameterName]; }
|
---|
125 | }
|
---|
126 | public ILookupParameter<SymbolicTimeSeriesPrognosisSolution> BestSolutionParameter {
|
---|
127 | get { return (ILookupParameter<SymbolicTimeSeriesPrognosisSolution>)Parameters[BestSolutionParameterName]; }
|
---|
128 | }
|
---|
129 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
130 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
131 | }
|
---|
132 | public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
|
---|
133 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
|
---|
134 | }
|
---|
135 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
136 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
137 | }
|
---|
138 | public ILookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
139 | get { return (ILookupParameter<DoubleValue>)Parameters[BestKnownQualityParameterName]; }
|
---|
140 | }
|
---|
141 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
142 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
143 | }
|
---|
144 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
145 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
146 | }
|
---|
147 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
148 | get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
|
---|
149 | }
|
---|
150 | public ILookupParameter<DoubleArray> BestSolutionMeanSquaredErrorTrainingParameter {
|
---|
151 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionMeanSquaredErrorTrainingParameterName]; }
|
---|
152 | }
|
---|
153 | public ILookupParameter<DoubleArray> BestSolutionMeanSquaredErrorTestParameter {
|
---|
154 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionMeanSquaredErrorTestParameterName]; }
|
---|
155 | }
|
---|
156 | public ILookupParameter<DoubleArray> BestSolutionRSquaredTrainingParameter {
|
---|
157 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionRSquaredTrainingParameterName]; }
|
---|
158 | }
|
---|
159 | public ILookupParameter<DoubleArray> BestSolutionRSquaredTestParameter {
|
---|
160 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionRSquaredTestParameterName]; }
|
---|
161 | }
|
---|
162 | public ILookupParameter<DoubleArray> BestSolutionDirectionalSymmetryTrainingParameter {
|
---|
163 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionDirectionalSymmetryTrainingParameterName]; }
|
---|
164 | }
|
---|
165 | public ILookupParameter<DoubleArray> BestSolutionDirectionalSymmetryTestParameter {
|
---|
166 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionDirectionalSymmetryTestParameterName]; }
|
---|
167 | }
|
---|
168 | public ILookupParameter<DoubleArray> BestSolutionTheilsUTrainingParameter {
|
---|
169 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionTheilsUTrainingParameterName]; }
|
---|
170 | }
|
---|
171 | public ILookupParameter<DoubleArray> BestSolutionTheilsUTestParameter {
|
---|
172 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionTheilsUTestParameterName]; }
|
---|
173 | }
|
---|
174 | public ILookupParameter<DoubleArray> BestSolutionTheilsUTrendTrainingParameter {
|
---|
175 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionTheilsUTrendTrainingParameterName]; }
|
---|
176 | }
|
---|
177 | public ILookupParameter<DoubleArray> BestSolutionTheilsUTrendTestParameter {
|
---|
178 | get { return (ILookupParameter<DoubleArray>)Parameters[BestSolutionTheilsUTrendTestParameterName]; }
|
---|
179 | }
|
---|
180 | #endregion
|
---|
181 | #region properties
|
---|
182 | public IRandom Random {
|
---|
183 | get { return RandomParameter.ActualValue; }
|
---|
184 | }
|
---|
185 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
186 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
187 | }
|
---|
188 | public ISymbolicTimeSeriesExpressionInterpreter SymbolicExpressionTreeInterpreter {
|
---|
189 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
190 | }
|
---|
191 | public MultiVariateDataAnalysisProblemData ProblemData {
|
---|
192 | get { return ProblemDataParameter.ActualValue; }
|
---|
193 | }
|
---|
194 | public IntValue ValidiationSamplesStart {
|
---|
195 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
196 | }
|
---|
197 | public IntValue ValidationSamplesEnd {
|
---|
198 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
199 | }
|
---|
200 | public DoubleArray UpperEstimationLimit {
|
---|
201 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
202 | }
|
---|
203 | public DoubleArray LowerEstimationLimit {
|
---|
204 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
205 | }
|
---|
206 | public IntValue ValidationPredictionHorizon {
|
---|
207 | get { return ValidationPredictionHorizonParameter.ActualValue; }
|
---|
208 | }
|
---|
209 | public IntValue ModelPredictionHorizon {
|
---|
210 | get { return ModelPredictionHorizonParameter.ActualValue; }
|
---|
211 | }
|
---|
212 | public StringValue ConditionVariableName {
|
---|
213 | get { return ConditionVariableNameParameter.Value; }
|
---|
214 | }
|
---|
215 | public ResultCollection Results {
|
---|
216 | get { return ResultsParameter.ActualValue; }
|
---|
217 | }
|
---|
218 | public DataTable VariableFrequencies {
|
---|
219 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
220 | }
|
---|
221 | public IntValue Generations {
|
---|
222 | get { return GenerationsParameter.ActualValue; }
|
---|
223 | }
|
---|
224 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
225 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
226 | }
|
---|
227 | public BoolValue Maximization {
|
---|
228 | get { return MaximizationParameter.ActualValue; }
|
---|
229 | }
|
---|
230 | public DoubleArray BestSolutionMeanSquaredErrorTraining {
|
---|
231 | get { return BestSolutionMeanSquaredErrorTrainingParameter.ActualValue; }
|
---|
232 | set { BestSolutionMeanSquaredErrorTrainingParameter.ActualValue = value; }
|
---|
233 | }
|
---|
234 | public DoubleArray BestSolutionMeanSquaredErrorTest {
|
---|
235 | get { return BestSolutionMeanSquaredErrorTestParameter.ActualValue; }
|
---|
236 | set { BestSolutionMeanSquaredErrorTestParameter.ActualValue = value; }
|
---|
237 | }
|
---|
238 | public DoubleArray BestSolutionRSquaredTraining {
|
---|
239 | get { return BestSolutionRSquaredTrainingParameter.ActualValue; }
|
---|
240 | set { BestSolutionRSquaredTrainingParameter.ActualValue = value; }
|
---|
241 | }
|
---|
242 | public DoubleArray BestSolutionRSquaredTest {
|
---|
243 | get { return BestSolutionRSquaredTestParameter.ActualValue; }
|
---|
244 | set { BestSolutionRSquaredTestParameter.ActualValue = value; }
|
---|
245 | }
|
---|
246 | public DoubleArray BestSolutionDirectionalSymmetryTraining {
|
---|
247 | get { return BestSolutionDirectionalSymmetryTrainingParameter.ActualValue; }
|
---|
248 | set { BestSolutionDirectionalSymmetryTrainingParameter.ActualValue = value; }
|
---|
249 | }
|
---|
250 | public DoubleArray BestSolutionDirectionalSymmetryTest {
|
---|
251 | get { return BestSolutionDirectionalSymmetryTestParameter.ActualValue; }
|
---|
252 | set { BestSolutionDirectionalSymmetryTestParameter.ActualValue = value; }
|
---|
253 | }
|
---|
254 | public DoubleArray BestSolutionTheilsUTraining {
|
---|
255 | get { return BestSolutionTheilsUTrainingParameter.ActualValue; }
|
---|
256 | set { BestSolutionTheilsUTrainingParameter.ActualValue = value; }
|
---|
257 | }
|
---|
258 | public DoubleArray BestSolutionTheilsUTest {
|
---|
259 | get { return BestSolutionTheilsUTestParameter.ActualValue; }
|
---|
260 | set { BestSolutionTheilsUTestParameter.ActualValue = value; }
|
---|
261 | }
|
---|
262 | public DoubleArray BestSolutionTheilsUTrendTraining {
|
---|
263 | get { return BestSolutionTheilsUTrendTrainingParameter.ActualValue; }
|
---|
264 | set { BestSolutionTheilsUTrendTrainingParameter.ActualValue = value; }
|
---|
265 | }
|
---|
266 | public DoubleArray BestSolutionTheilsUTrendTest {
|
---|
267 | get { return BestSolutionTheilsUTrendTestParameter.ActualValue; }
|
---|
268 | set { BestSolutionTheilsUTrendTestParameter.ActualValue = value; }
|
---|
269 | }
|
---|
270 | #endregion
|
---|
271 |
|
---|
272 | [StorableConstructor]
|
---|
273 | protected ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
274 | protected ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer(ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer original, Cloner cloner)
|
---|
275 | : base(original, cloner) {
|
---|
276 | }
|
---|
277 | public ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer()
|
---|
278 | : base() {
|
---|
279 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "A random number generator."));
|
---|
280 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
281 | Parameters.Add(new OptionalValueParameter<StringValue>(ConditionVariableParameterName, "The name of the condition variable indicating if a row should be considered for evaluation or not."));
|
---|
282 | Parameters.Add(new ValueLookupParameter<ISymbolicTimeSeriesExpressionInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
283 | Parameters.Add(new ValueLookupParameter<MultiVariateDataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
284 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
285 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
286 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationPredictionHorizonParameterName, "The number of time steps for which to create a forecast for the validation procedure."));
|
---|
287 | Parameters.Add(new ValueLookupParameter<IntValue>(ModelPredictionHorizonParameterName, "Prediction horizont stored in the validation best model."));
|
---|
288 | Parameters.Add(new LookupParameter<ISingleObjectiveSymbolicTimeSeriesPrognosisEvaluator>(EvaluatorParameterName, ""));
|
---|
289 | Parameters.Add(new ValueLookupParameter<DoubleArray>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
290 | Parameters.Add(new ValueLookupParameter<DoubleArray>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
291 | Parameters.Add(new LookupParameter<SymbolicTimeSeriesPrognosisSolution>(BestSolutionParameterName, "The best symbolic time series prognosis solution."));
|
---|
292 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
293 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
|
---|
294 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
|
---|
295 | Parameters.Add(new LookupParameter<DoubleValue>(BestKnownQualityParameterName, "The best known (validation) quality achieved on the data set."));
|
---|
296 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
297 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
298 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName));
|
---|
299 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionMeanSquaredErrorTrainingParameterName));
|
---|
300 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionMeanSquaredErrorTestParameterName));
|
---|
301 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionRSquaredTrainingParameterName));
|
---|
302 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionRSquaredTestParameterName));
|
---|
303 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionDirectionalSymmetryTrainingParameterName));
|
---|
304 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionDirectionalSymmetryTestParameterName));
|
---|
305 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionTheilsUTrainingParameterName));
|
---|
306 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionTheilsUTestParameterName));
|
---|
307 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionTheilsUTrendTrainingParameterName));
|
---|
308 | Parameters.Add(new LookupParameter<DoubleArray>(BestSolutionTheilsUTrendTestParameterName));
|
---|
309 | }
|
---|
310 |
|
---|
311 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
312 | return new ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer(this, cloner);
|
---|
313 | }
|
---|
314 | [StorableHook(Persistence.Default.CompositeSerializers.Storable.HookType.AfterDeserialization)]
|
---|
315 | private void AfterDeserialization() {
|
---|
316 |
|
---|
317 | }
|
---|
318 |
|
---|
319 | public override IOperation Apply() {
|
---|
320 | var trees = SymbolicExpressionTree;
|
---|
321 |
|
---|
322 | ISingleObjectiveSymbolicTimeSeriesPrognosisEvaluator evaluator = EvaluatorParameter.ActualValue;
|
---|
323 |
|
---|
324 | int trainingStart = ProblemData.TrainingSamplesStart.Value;
|
---|
325 | int trainingEnd = ProblemData.TrainingSamplesEnd.Value;
|
---|
326 | int testStart = ProblemData.TestSamplesStart.Value;
|
---|
327 | int testEnd = ProblemData.TestSamplesEnd.Value;
|
---|
328 |
|
---|
329 | #region validation best model
|
---|
330 | int validationStart = ValidiationSamplesStart.Value;
|
---|
331 | int validationEnd = ValidationSamplesEnd.Value;
|
---|
332 | int rowCount = (int)Math.Ceiling((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
333 | IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(Random.Next(), validationStart, validationEnd, rowCount);
|
---|
334 | double bestValidationQuality = Maximization.Value ? double.MinValue : double.MaxValue;
|
---|
335 | SymbolicExpressionTree bestTree = null;
|
---|
336 | string conditionalVariableName = ConditionVariableName == null ? null : ConditionVariableName.Value;
|
---|
337 | if (conditionalVariableName != null) {
|
---|
338 | rows = from row in rows
|
---|
339 | where !ProblemData.Dataset[conditionalVariableName, row].IsAlmost(0.0)
|
---|
340 | select row;
|
---|
341 | }
|
---|
342 |
|
---|
343 | foreach (var tree in trees) {
|
---|
344 | double validationQuality;
|
---|
345 | validationQuality = evaluator.Evaluate(tree, ProblemData,
|
---|
346 | SymbolicExpressionTreeInterpreter, rows, ValidationPredictionHorizon.Value, LowerEstimationLimit, UpperEstimationLimit);
|
---|
347 | if ((Maximization.Value && validationQuality > bestValidationQuality) ||
|
---|
348 | (!Maximization.Value && validationQuality < bestValidationQuality)) {
|
---|
349 | bestValidationQuality = validationQuality;
|
---|
350 | bestTree = tree;
|
---|
351 | }
|
---|
352 | }
|
---|
353 |
|
---|
354 |
|
---|
355 | if (BestSolutionQualityParameter.ActualValue == null ||
|
---|
356 | (Maximization.Value && BestSolutionQualityParameter.ActualValue.Value < bestValidationQuality) ||
|
---|
357 | (!Maximization.Value && BestSolutionQualityParameter.ActualValue.Value > bestValidationQuality)) {
|
---|
358 | var scaledTree = GetScaledTree(bestTree);
|
---|
359 | var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicTimeSeriesExpressionInterpreter)SymbolicExpressionTreeInterpreter.Clone(), scaledTree);
|
---|
360 | model.Name = "Time series prognosis model";
|
---|
361 | model.Description = "Best solution on validation partition found over the whole run.";
|
---|
362 |
|
---|
363 | var solution = new SymbolicTimeSeriesPrognosisSolution((MultiVariateDataAnalysisProblemData)ProblemData.Clone(), model, ModelPredictionHorizon.Value, conditionalVariableName, LowerEstimationLimit.ToArray(), UpperEstimationLimit.ToArray());
|
---|
364 | solution.Name = BestSolutionParameterName;
|
---|
365 | solution.Description = "Best solution on validation partition found over the whole run.";
|
---|
366 |
|
---|
367 | BestSolutionParameter.ActualValue = solution;
|
---|
368 | BestSolutionQualityParameter.ActualValue = new DoubleValue(bestValidationQuality);
|
---|
369 |
|
---|
370 | #region calculate accuracy
|
---|
371 | List<string> targetVariables = ProblemData.TargetVariables.CheckedItems.Select(x => x.Value.Value).ToList();
|
---|
372 |
|
---|
373 | // create a list of time series evaluators for each target variable
|
---|
374 | Dictionary<string, List<IOnlineEvaluator>> trainingEvaluators =
|
---|
375 | new Dictionary<string, List<IOnlineEvaluator>>();
|
---|
376 | Dictionary<string, List<IOnlineEvaluator>> testEvaluators =
|
---|
377 | new Dictionary<string, List<IOnlineEvaluator>>();
|
---|
378 | foreach (string targetVariable in targetVariables) {
|
---|
379 | trainingEvaluators.Add(targetVariable, new List<IOnlineEvaluator>());
|
---|
380 | trainingEvaluators[targetVariable].Add(new OnlineMeanSquaredErrorEvaluator());
|
---|
381 | trainingEvaluators[targetVariable].Add(new OnlinePearsonsRSquaredEvaluator());
|
---|
382 | trainingEvaluators[targetVariable].Add(new OnlineDirectionalSymmetryEvaluator());
|
---|
383 | trainingEvaluators[targetVariable].Add(new OnlineTheilsUStatisticEvaluator());
|
---|
384 | trainingEvaluators[targetVariable].Add(new OnlineTheilsUStatisticEvaluator(10));
|
---|
385 |
|
---|
386 | testEvaluators.Add(targetVariable, new List<IOnlineEvaluator>());
|
---|
387 | testEvaluators[targetVariable].Add(new OnlineMeanSquaredErrorEvaluator());
|
---|
388 | testEvaluators[targetVariable].Add(new OnlinePearsonsRSquaredEvaluator());
|
---|
389 | testEvaluators[targetVariable].Add(new OnlineDirectionalSymmetryEvaluator());
|
---|
390 | testEvaluators[targetVariable].Add(new OnlineTheilsUStatisticEvaluator());
|
---|
391 | testEvaluators[targetVariable].Add(new OnlineTheilsUStatisticEvaluator(10));
|
---|
392 | }
|
---|
393 |
|
---|
394 | Evaluate(solution, solution.ProblemData.Dataset, targetVariables, conditionalVariableName, trainingStart, trainingEnd, trainingEvaluators);
|
---|
395 | Evaluate(solution, solution.ProblemData.Dataset, targetVariables, conditionalVariableName, testStart, testEnd, testEvaluators);
|
---|
396 | #endregion
|
---|
397 | BestSolutionMeanSquaredErrorTraining = new DoubleArray((from variable in targetVariables
|
---|
398 | let eval = trainingEvaluators[variable].OfType<OnlineMeanSquaredErrorEvaluator>().Single()
|
---|
399 | select TryGetValue(eval))
|
---|
400 | .ToArray());
|
---|
401 | BestSolutionMeanSquaredErrorTest = new DoubleArray((from variable in targetVariables
|
---|
402 | select TryGetValue(testEvaluators[variable].OfType<OnlineMeanSquaredErrorEvaluator>().Single()))
|
---|
403 | .ToArray());
|
---|
404 | BestSolutionRSquaredTraining = new DoubleArray((from variable in targetVariables
|
---|
405 | select TryGetValue(trainingEvaluators[variable].OfType<OnlinePearsonsRSquaredEvaluator>().Single()))
|
---|
406 | .ToArray());
|
---|
407 | BestSolutionRSquaredTest = new DoubleArray((from variable in targetVariables
|
---|
408 | select TryGetValue(testEvaluators[variable].OfType<OnlinePearsonsRSquaredEvaluator>().Single()))
|
---|
409 | .ToArray());
|
---|
410 | BestSolutionDirectionalSymmetryTraining = new DoubleArray((from variable in targetVariables
|
---|
411 | select TryGetValue(trainingEvaluators[variable].OfType<OnlineDirectionalSymmetryEvaluator>().Single()))
|
---|
412 | .ToArray());
|
---|
413 | BestSolutionDirectionalSymmetryTest = new DoubleArray((from variable in targetVariables
|
---|
414 | select TryGetValue(testEvaluators[variable].OfType<OnlineDirectionalSymmetryEvaluator>().Single()))
|
---|
415 | .ToArray());
|
---|
416 | BestSolutionTheilsUTraining = new DoubleArray((from variable in targetVariables
|
---|
417 | select TryGetValue(trainingEvaluators[variable].OfType<OnlineTheilsUStatisticEvaluator>().First()))
|
---|
418 | .ToArray());
|
---|
419 | BestSolutionTheilsUTest = new DoubleArray((from variable in targetVariables
|
---|
420 | select TryGetValue(testEvaluators[variable].OfType<OnlineTheilsUStatisticEvaluator>().First()))
|
---|
421 | .ToArray());
|
---|
422 | BestSolutionTheilsUTrendTraining = new DoubleArray((from variable in targetVariables
|
---|
423 | select TryGetValue(trainingEvaluators[variable].OfType<OnlineTheilsUStatisticEvaluator>().Skip(1).First()))
|
---|
424 | .ToArray());
|
---|
425 | BestSolutionTheilsUTrendTest = new DoubleArray((from variable in targetVariables
|
---|
426 | select TryGetValue(testEvaluators[variable].OfType<OnlineTheilsUStatisticEvaluator>().Skip(1).First()))
|
---|
427 | .ToArray());
|
---|
428 | if (!Results.ContainsKey(BestSolutionParameterName)) {
|
---|
429 | for (int i = 0; i < targetVariables.Count; i++) {
|
---|
430 | Results.Add(new Result(BestSolutionMeanSquaredErrorTrainingParameterName + " (" + targetVariables[i] + ")",
|
---|
431 | new DoubleValue(BestSolutionMeanSquaredErrorTraining[i])));
|
---|
432 | Results.Add(new Result(BestSolutionMeanSquaredErrorTestParameterName + " (" + targetVariables[i] + ")",
|
---|
433 | new DoubleValue(BestSolutionMeanSquaredErrorTest[i])));
|
---|
434 | Results.Add(new Result(BestSolutionRSquaredTrainingParameterName + " (" + targetVariables[i] + ")",
|
---|
435 | new DoubleValue(BestSolutionRSquaredTraining[i])));
|
---|
436 | Results.Add(new Result(BestSolutionRSquaredTestParameterName + " (" + targetVariables[i] + ")",
|
---|
437 | new DoubleValue(BestSolutionRSquaredTest[i])));
|
---|
438 | Results.Add(new Result(BestSolutionDirectionalSymmetryTrainingParameterName + " (" + targetVariables[i] + ")",
|
---|
439 | new DoubleValue(BestSolutionDirectionalSymmetryTraining[i])));
|
---|
440 | Results.Add(new Result(BestSolutionDirectionalSymmetryTestParameterName + " (" + targetVariables[i] + ")",
|
---|
441 | new DoubleValue(BestSolutionDirectionalSymmetryTest[i])));
|
---|
442 | Results.Add(new Result(BestSolutionTheilsUTrainingParameterName + " (" + targetVariables[i] + ")",
|
---|
443 | new DoubleValue(BestSolutionTheilsUTraining[i])));
|
---|
444 | Results.Add(new Result(BestSolutionTheilsUTestParameterName + " (" + targetVariables[i] + ")",
|
---|
445 | new DoubleValue(BestSolutionTheilsUTest[i])));
|
---|
446 | Results.Add(new Result(BestSolutionTheilsUTrendTrainingParameterName + " (" + targetVariables[i] + ")",
|
---|
447 | new DoubleValue(BestSolutionTheilsUTrendTraining[i])));
|
---|
448 | Results.Add(new Result(BestSolutionTheilsUTrendTestParameterName + " (" + targetVariables[i] + ")",
|
---|
449 | new DoubleValue(BestSolutionTheilsUTrendTest[i])));
|
---|
450 | }
|
---|
451 | } else {
|
---|
452 | for (int i = 0; i < targetVariables.Count; i++) {
|
---|
453 | Results[BestSolutionMeanSquaredErrorTrainingParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
454 | new DoubleValue(BestSolutionMeanSquaredErrorTraining[i]);
|
---|
455 | Results[BestSolutionMeanSquaredErrorTestParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
456 | new DoubleValue(BestSolutionMeanSquaredErrorTest[i]);
|
---|
457 | Results[BestSolutionRSquaredTrainingParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
458 | new DoubleValue(BestSolutionRSquaredTraining[i]);
|
---|
459 | Results[BestSolutionRSquaredTestParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
460 | new DoubleValue(BestSolutionRSquaredTest[i]);
|
---|
461 | Results[BestSolutionDirectionalSymmetryTrainingParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
462 | new DoubleValue(BestSolutionDirectionalSymmetryTraining[i]);
|
---|
463 | Results[BestSolutionDirectionalSymmetryTestParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
464 | new DoubleValue(BestSolutionDirectionalSymmetryTest[i]);
|
---|
465 | Results[BestSolutionTheilsUTrainingParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
466 | new DoubleValue(BestSolutionTheilsUTraining[i]);
|
---|
467 | Results[BestSolutionTheilsUTestParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
468 | new DoubleValue(BestSolutionTheilsUTest[i]);
|
---|
469 | Results[BestSolutionTheilsUTrendTrainingParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
470 | new DoubleValue(BestSolutionTheilsUTrendTraining[i]);
|
---|
471 | Results[BestSolutionTheilsUTrendTestParameterName + " (" + targetVariables[i] + ")"].Value =
|
---|
472 | new DoubleValue(BestSolutionTheilsUTrendTest[i]);
|
---|
473 | }
|
---|
474 | }
|
---|
475 | }
|
---|
476 |
|
---|
477 | if (!Results.ContainsKey(BestSolutionQualityValuesParameterName)) {
|
---|
478 | Results.Add(new Result(BestSolutionParameterName, BestSolutionParameter.ActualValue));
|
---|
479 | Results.Add(new Result(BestSolutionQualityValuesParameterName, new DataTable(BestSolutionQualityValuesParameterName, BestSolutionQualityValuesParameterName)));
|
---|
480 | Results.Add(new Result(BestSolutionQualityParameterName, new DoubleValue()));
|
---|
481 | Results.Add(new Result(CurrentBestValidationQualityParameterName, new DoubleValue()));
|
---|
482 | }
|
---|
483 | Results[BestSolutionParameterName].Value = BestSolutionParameter.ActualValue;
|
---|
484 | Results[BestSolutionQualityParameterName].Value = new DoubleValue(BestSolutionQualityParameter.ActualValue.Value);
|
---|
485 | Results[CurrentBestValidationQualityParameterName].Value = new DoubleValue(bestValidationQuality);
|
---|
486 |
|
---|
487 | DataTable validationValues = (DataTable)Results[BestSolutionQualityValuesParameterName].Value;
|
---|
488 | AddValue(validationValues, BestSolutionQualityParameter.ActualValue.Value, BestSolutionQualityParameterName, BestSolutionQualityParameterName);
|
---|
489 | AddValue(validationValues, bestValidationQuality, CurrentBestValidationQualityParameterName, CurrentBestValidationQualityParameterName);
|
---|
490 | #endregion
|
---|
491 | return base.Apply();
|
---|
492 | }
|
---|
493 |
|
---|
494 | private double TryGetValue(IOnlineEvaluator eval) {
|
---|
495 | try {
|
---|
496 | return eval.Value;
|
---|
497 | }
|
---|
498 | catch {
|
---|
499 | return double.NaN;
|
---|
500 | }
|
---|
501 | }
|
---|
502 |
|
---|
503 | private SymbolicExpressionTree GetScaledTree(SymbolicExpressionTree tree) {
|
---|
504 | double[] alpha, beta;
|
---|
505 | int trainingStart = ProblemData.TrainingSamplesStart.Value;
|
---|
506 | int trainingEnd = ProblemData.TrainingSamplesEnd.Value;
|
---|
507 | IEnumerable<int> trainingRows = Enumerable.Range(trainingStart, trainingEnd - trainingStart);
|
---|
508 | string conditionalVariableName = ConditionVariableName == null ? null : ConditionVariableName.Value;
|
---|
509 | if (conditionalVariableName != null) {
|
---|
510 | trainingRows = from row in trainingRows
|
---|
511 | where !ProblemData.Dataset[conditionalVariableName, row].IsAlmost(0.0)
|
---|
512 | select row;
|
---|
513 | }
|
---|
514 |
|
---|
515 | // calculate scaling parameters based on one-step-predictions
|
---|
516 | IEnumerable<string> selectedTargetVariables = from item in ProblemData.TargetVariables
|
---|
517 | where ProblemData.TargetVariables.ItemChecked(item)
|
---|
518 | select item.Value;
|
---|
519 | int dimension = selectedTargetVariables.Count();
|
---|
520 |
|
---|
521 | IEnumerable<IEnumerable<double>> oneStepPredictions =
|
---|
522 | SymbolicExpressionTreeInterpreter.GetSymbolicExpressionTreeValues(tree, ProblemData.Dataset, selectedTargetVariables, trainingRows, 1)
|
---|
523 | .Cast<IEnumerable<double>>();
|
---|
524 | IEnumerable<IEnumerable<double>> originalValues = from row in trainingRows
|
---|
525 | select (from targetVariable in selectedTargetVariables
|
---|
526 | select ProblemData.Dataset[targetVariable, row]);
|
---|
527 | alpha = new double[dimension];
|
---|
528 | beta = new double[dimension];
|
---|
529 |
|
---|
530 | SymbolicTimeSeriesPrognosisScaledNormalizedMseEvaluator.CalculateScalingParameters(originalValues, oneStepPredictions, ref beta, ref alpha);
|
---|
531 |
|
---|
532 | // scale tree for solution
|
---|
533 | return SymbolicVectorRegressionSolutionLinearScaler.Scale(tree, beta, alpha);
|
---|
534 | }
|
---|
535 |
|
---|
536 | private void Evaluate(SymbolicTimeSeriesPrognosisSolution solution, Dataset dataset, IEnumerable<string> targetVariables, string conditionalEvaluationVariable, int start, int end, Dictionary<string, List<IOnlineEvaluator>> evaluators) {
|
---|
537 |
|
---|
538 | for (int row = start; row < end; row++) {
|
---|
539 | if (string.IsNullOrEmpty(conditionalEvaluationVariable) || dataset[conditionalEvaluationVariable, row] != 0) {
|
---|
540 | // prepare evaluators for each target variable for a new prediction window
|
---|
541 | foreach (var entry in evaluators) {
|
---|
542 | double referenceOriginalValue = dataset[entry.Key, row - 1];
|
---|
543 | foreach (IOnlineTimeSeriesPrognosisEvaluator evaluator in entry.Value.OfType<IOnlineTimeSeriesPrognosisEvaluator>()) {
|
---|
544 | evaluator.StartNewPredictionWindow(referenceOriginalValue);
|
---|
545 | }
|
---|
546 | }
|
---|
547 |
|
---|
548 |
|
---|
549 | if (string.IsNullOrEmpty(conditionalEvaluationVariable) ||
|
---|
550 | dataset[conditionalEvaluationVariable, row] > 0) {
|
---|
551 | int timestep = 0;
|
---|
552 | foreach (double[] x in solution.GetPrognosis(row)) {
|
---|
553 | int targetIndex = 0;
|
---|
554 | if (row + timestep < dataset.Rows) {
|
---|
555 | foreach (var targetVariable in targetVariables) {
|
---|
556 | double originalValue = dataset[targetVariable, row + timestep];
|
---|
557 | double estimatedValue = x[targetIndex];
|
---|
558 | if (IsValidValue(originalValue) && IsValidValue(estimatedValue)) {
|
---|
559 | foreach (IOnlineEvaluator evaluator in evaluators[targetVariable]) {
|
---|
560 | evaluator.Add(originalValue, estimatedValue);
|
---|
561 | }
|
---|
562 | }
|
---|
563 | targetIndex++;
|
---|
564 | }
|
---|
565 | }
|
---|
566 | timestep++;
|
---|
567 | }
|
---|
568 | }
|
---|
569 | }
|
---|
570 | }
|
---|
571 | }
|
---|
572 | private bool IsValidValue(double d) {
|
---|
573 | return !(double.IsNaN(d) || double.IsInfinity(d));
|
---|
574 | }
|
---|
575 |
|
---|
576 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
577 | DataRow row;
|
---|
578 | table.Rows.TryGetValue(name, out row);
|
---|
579 | if (row == null) {
|
---|
580 | row = new DataRow(name, description);
|
---|
581 | row.Values.Add(data);
|
---|
582 | table.Rows.Add(row);
|
---|
583 | } else {
|
---|
584 | row.Values.Add(data);
|
---|
585 | }
|
---|
586 | }
|
---|
587 | }
|
---|
588 | }
|
---|