1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Operators;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
33 | using System.Collections.Generic;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis;
|
---|
36 | using System;
|
---|
37 |
|
---|
38 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
39 | using HeuristicLab.Problems.DataAnalysis.Regression;
|
---|
40 | using HeuristicLab.Analysis;
|
---|
41 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Evaluators;
|
---|
42 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic;
|
---|
43 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Interfaces;
|
---|
44 |
|
---|
45 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Analyzers {
|
---|
46 | /// <summary>
|
---|
47 | /// An operator that analyzes the validation best scaled symbolic time series prognosis solution.
|
---|
48 | /// </summary>
|
---|
49 | [Item("ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer", "An operator that analyzes the validation best scaled symbolic time series prognosis solution.")]
|
---|
50 | [StorableClass]
|
---|
51 | public sealed class ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
52 | private const string RandomParameterName = "Random";
|
---|
53 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
54 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
55 | private const string ProblemDataParameterName = "ProblemData";
|
---|
56 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
57 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
58 | private const string QualityParameterName = "Quality";
|
---|
59 | private const string ScaledQualityParameterName = "ScaledQuality";
|
---|
60 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
61 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
62 | private const string PredictionHorizonParameterName = "PredictionHorizon";
|
---|
63 | private const string ConditionVariableParameterName = "ConditionVariableName";
|
---|
64 | private const string AlphaParameterName = "Alpha";
|
---|
65 | private const string BetaParameterName = "Beta";
|
---|
66 | private const string BestSolutionParameterName = "Best solution (validation)";
|
---|
67 | private const string BestSolutionQualityParameterName = "Best solution quality (validation)";
|
---|
68 | private const string CurrentBestValidationQualityParameterName = "Current best validation quality";
|
---|
69 | private const string BestSolutionQualityValuesParameterName = "Validation Quality";
|
---|
70 | private const string ResultsParameterName = "Results";
|
---|
71 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
72 | private const string BestKnownQualityParameterName = "BestKnownQuality";
|
---|
73 | private const string GenerationsParameterName = "Generations";
|
---|
74 |
|
---|
75 | private const string TrainingMeanSquaredErrorQualityParameterName = "Mean squared error (training)";
|
---|
76 | private const string MinTrainingMeanSquaredErrorQualityParameterName = "Min mean squared error (training)";
|
---|
77 | private const string MaxTrainingMeanSquaredErrorQualityParameterName = "Max mean squared error (training)";
|
---|
78 | private const string AverageTrainingMeanSquaredErrorQualityParameterName = "Average mean squared error (training)";
|
---|
79 | private const string BestTrainingMeanSquaredErrorQualityParameterName = "Best mean squared error (training)";
|
---|
80 |
|
---|
81 | private const string TrainingAverageRelativeErrorQualityParameterName = "Average relative error (training)";
|
---|
82 | private const string MinTrainingAverageRelativeErrorQualityParameterName = "Min average relative error (training)";
|
---|
83 | private const string MaxTrainingAverageRelativeErrorQualityParameterName = "Max average relative error (training)";
|
---|
84 | private const string AverageTrainingAverageRelativeErrorQualityParameterName = "Average average relative error (training)";
|
---|
85 | private const string BestTrainingAverageRelativeErrorQualityParameterName = "Best average relative error (training)";
|
---|
86 |
|
---|
87 | private const string TrainingRSquaredQualityParameterName = "R² (training)";
|
---|
88 | private const string MinTrainingRSquaredQualityParameterName = "Min R² (training)";
|
---|
89 | private const string MaxTrainingRSquaredQualityParameterName = "Max R² (training)";
|
---|
90 | private const string AverageTrainingRSquaredQualityParameterName = "Average R² (training)";
|
---|
91 | private const string BestTrainingRSquaredQualityParameterName = "Best R² (training)";
|
---|
92 |
|
---|
93 | private const string TestMeanSquaredErrorQualityParameterName = "Mean squared error (test)";
|
---|
94 | private const string MinTestMeanSquaredErrorQualityParameterName = "Min mean squared error (test)";
|
---|
95 | private const string MaxTestMeanSquaredErrorQualityParameterName = "Max mean squared error (test)";
|
---|
96 | private const string AverageTestMeanSquaredErrorQualityParameterName = "Average mean squared error (test)";
|
---|
97 | private const string BestTestMeanSquaredErrorQualityParameterName = "Best mean squared error (test)";
|
---|
98 |
|
---|
99 | private const string TestAverageRelativeErrorQualityParameterName = "Average relative error (test)";
|
---|
100 | private const string MinTestAverageRelativeErrorQualityParameterName = "Min average relative error (test)";
|
---|
101 | private const string MaxTestAverageRelativeErrorQualityParameterName = "Max average relative error (test)";
|
---|
102 | private const string AverageTestAverageRelativeErrorQualityParameterName = "Average average relative error (test)";
|
---|
103 | private const string BestTestAverageRelativeErrorQualityParameterName = "Best average relative error (test)";
|
---|
104 |
|
---|
105 | private const string TestRSquaredQualityParameterName = "R² (test)";
|
---|
106 | private const string MinTestRSquaredQualityParameterName = "Min R² (test)";
|
---|
107 | private const string MaxTestRSquaredQualityParameterName = "Max R² (test)";
|
---|
108 | private const string AverageTestRSquaredQualityParameterName = "Average R² (test)";
|
---|
109 | private const string BestTestRSquaredQualityParameterName = "Best R² (test)";
|
---|
110 |
|
---|
111 | private const string RSquaredValuesParameterName = "R²";
|
---|
112 | private const string MeanSquaredErrorValuesParameterName = "Mean squared error";
|
---|
113 | private const string RelativeErrorValuesParameterName = "Average relative error";
|
---|
114 | private const string BestSolutionResultName = "Best solution (on validiation set)";
|
---|
115 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
116 |
|
---|
117 | #region parameter properties
|
---|
118 | public ILookupParameter<IRandom> RandomParameter {
|
---|
119 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
120 | }
|
---|
121 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
122 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
123 | }
|
---|
124 | public OptionalValueParameter<StringValue> ConditionVariableNameParameter {
|
---|
125 | get { return (OptionalValueParameter<StringValue>)Parameters[ConditionVariableParameterName]; }
|
---|
126 | }
|
---|
127 | public ScopeTreeLookupParameter<DoubleArray> AlphaParameter {
|
---|
128 | get { return (ScopeTreeLookupParameter<DoubleArray>)Parameters[AlphaParameterName]; }
|
---|
129 | }
|
---|
130 | public ScopeTreeLookupParameter<DoubleArray> BetaParameter {
|
---|
131 | get { return (ScopeTreeLookupParameter<DoubleArray>)Parameters[BetaParameterName]; }
|
---|
132 | }
|
---|
133 | public IValueLookupParameter<ISymbolicTimeSeriesExpressionInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
134 | get { return (IValueLookupParameter<ISymbolicTimeSeriesExpressionInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
135 | }
|
---|
136 | public IValueLookupParameter<MultiVariateDataAnalysisProblemData> ProblemDataParameter {
|
---|
137 | get { return (IValueLookupParameter<MultiVariateDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
138 | }
|
---|
139 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
140 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
141 | }
|
---|
142 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
143 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
144 | }
|
---|
145 | public IValueLookupParameter<DoubleArray> UpperEstimationLimitParameter {
|
---|
146 | get { return (IValueLookupParameter<DoubleArray>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
147 | }
|
---|
148 | public IValueLookupParameter<DoubleArray> LowerEstimationLimitParameter {
|
---|
149 | get { return (IValueLookupParameter<DoubleArray>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
150 | }
|
---|
151 | public IValueLookupParameter<IntValue> PredictionHorizonParameter {
|
---|
152 | get { return (IValueLookupParameter<IntValue>)Parameters[PredictionHorizonParameterName]; }
|
---|
153 | }
|
---|
154 | public ILookupParameter<SymbolicTimeSeriesPrognosisSolution> BestSolutionParameter {
|
---|
155 | get { return (ILookupParameter<SymbolicTimeSeriesPrognosisSolution>)Parameters[BestSolutionParameterName]; }
|
---|
156 | }
|
---|
157 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
158 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
159 | }
|
---|
160 | public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
|
---|
161 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
|
---|
162 | }
|
---|
163 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
164 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
165 | }
|
---|
166 | public ILookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
167 | get { return (ILookupParameter<DoubleValue>)Parameters[BestKnownQualityParameterName]; }
|
---|
168 | }
|
---|
169 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
170 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
171 | }
|
---|
172 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
173 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
174 | }
|
---|
175 | #endregion
|
---|
176 | #region properties
|
---|
177 | public IRandom Random {
|
---|
178 | get { return RandomParameter.ActualValue; }
|
---|
179 | }
|
---|
180 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
181 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
182 | }
|
---|
183 | public ItemArray<DoubleArray> Alpha {
|
---|
184 | get { return AlphaParameter.ActualValue; }
|
---|
185 | }
|
---|
186 | public ItemArray<DoubleArray> Beta {
|
---|
187 | get { return BetaParameter.ActualValue; }
|
---|
188 | }
|
---|
189 | public ISymbolicTimeSeriesExpressionInterpreter SymbolicExpressionTreeInterpreter {
|
---|
190 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
191 | }
|
---|
192 | public MultiVariateDataAnalysisProblemData ProblemData {
|
---|
193 | get { return ProblemDataParameter.ActualValue; }
|
---|
194 | }
|
---|
195 | public IntValue ValidiationSamplesStart {
|
---|
196 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
197 | }
|
---|
198 | public IntValue ValidationSamplesEnd {
|
---|
199 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
200 | }
|
---|
201 | public DoubleArray UpperEstimationLimit {
|
---|
202 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
203 | }
|
---|
204 | public DoubleArray LowerEstimationLimit {
|
---|
205 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
206 | }
|
---|
207 | public IntValue PredictionHorizon {
|
---|
208 | get { return PredictionHorizonParameter.ActualValue; }
|
---|
209 | }
|
---|
210 | public StringValue ConditionVariableName {
|
---|
211 | get { return ConditionVariableNameParameter.Value; }
|
---|
212 | }
|
---|
213 | public ResultCollection Results {
|
---|
214 | get { return ResultsParameter.ActualValue; }
|
---|
215 | }
|
---|
216 | public DataTable VariableFrequencies {
|
---|
217 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
218 | }
|
---|
219 | public IntValue Generations {
|
---|
220 | get { return GenerationsParameter.ActualValue; }
|
---|
221 | }
|
---|
222 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
223 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
224 | }
|
---|
225 | #endregion
|
---|
226 |
|
---|
227 | public ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer()
|
---|
228 | : base() {
|
---|
229 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "A random number generator."));
|
---|
230 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
231 | Parameters.Add(new OptionalValueParameter<StringValue>(ConditionVariableParameterName, "The name of the condition variable indicating if a row should be considered for evaluation or not."));
|
---|
232 | Parameters.Add(new ScopeTreeLookupParameter<DoubleArray>(AlphaParameterName, "The alpha parameter for linear scaling."));
|
---|
233 | Parameters.Add(new ScopeTreeLookupParameter<DoubleArray>(BetaParameterName, "The beta parameter for linear scaling."));
|
---|
234 | Parameters.Add(new ValueLookupParameter<ISymbolicTimeSeriesExpressionInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
235 | Parameters.Add(new ValueLookupParameter<MultiVariateDataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
236 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
237 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
238 | Parameters.Add(new ValueLookupParameter<IntValue>(PredictionHorizonParameterName, "The number of time steps for which to create a forecast."));
|
---|
239 | Parameters.Add(new ValueLookupParameter<DoubleArray>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
240 | Parameters.Add(new ValueLookupParameter<DoubleArray>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
241 | Parameters.Add(new LookupParameter<SymbolicTimeSeriesPrognosisSolution>(BestSolutionParameterName, "The best symbolic time series prognosis solution."));
|
---|
242 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
243 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
|
---|
244 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
|
---|
245 | Parameters.Add(new LookupParameter<DoubleValue>(BestKnownQualityParameterName, "The best known (validation) quality achieved on the data set."));
|
---|
246 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
247 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
248 |
|
---|
249 | }
|
---|
250 |
|
---|
251 | [StorableConstructor]
|
---|
252 | private ValidationBestScaledSymbolicTimeSeriesPrognosisSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
253 |
|
---|
254 | public override IOperation Apply() {
|
---|
255 | var alphas = Alpha;
|
---|
256 | var betas = Beta;
|
---|
257 | var trees = SymbolicExpressionTree;
|
---|
258 |
|
---|
259 | IEnumerable<SymbolicExpressionTree> scaledTrees;
|
---|
260 | if (alphas.Length == trees.Length) {
|
---|
261 | scaledTrees = from i in Enumerable.Range(0, trees.Length)
|
---|
262 | select SymbolicVectorRegressionSolutionLinearScaler.Scale(trees[i], betas[i].ToArray(), alphas[i].ToArray());
|
---|
263 | } else {
|
---|
264 | scaledTrees = trees;
|
---|
265 | }
|
---|
266 |
|
---|
267 | int trainingStart = ProblemData.TrainingSamplesStart.Value;
|
---|
268 | int trainingEnd = ProblemData.TrainingSamplesEnd.Value;
|
---|
269 | int testStart = ProblemData.TestSamplesStart.Value;
|
---|
270 | int testEnd = ProblemData.TestSamplesEnd.Value;
|
---|
271 |
|
---|
272 | #region validation best model
|
---|
273 | int validationStart = ValidiationSamplesStart.Value;
|
---|
274 | int validationEnd = ValidationSamplesEnd.Value;
|
---|
275 | int rowCount = (int)Math.Ceiling((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
276 | IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(Random.Next(), validationStart, validationEnd, rowCount);
|
---|
277 | double bestValidationNmse = double.MaxValue;
|
---|
278 | SymbolicExpressionTree bestTree = null;
|
---|
279 | string conditionalVariableName = ConditionVariableName == null ? null : ConditionVariableName.Value;
|
---|
280 | foreach (var tree in scaledTrees) {
|
---|
281 | double validationNmse;
|
---|
282 | validationNmse = SymbolicTimeSeriesPrognosisNormalizedMseEvaluator.Evaluate(tree, ProblemData,
|
---|
283 | SymbolicExpressionTreeInterpreter, conditionalVariableName,
|
---|
284 | rows, PredictionHorizon.Value, LowerEstimationLimit, UpperEstimationLimit);
|
---|
285 | if (validationNmse < bestValidationNmse) {
|
---|
286 | bestValidationNmse = validationNmse;
|
---|
287 | bestTree = tree;
|
---|
288 | }
|
---|
289 | }
|
---|
290 |
|
---|
291 |
|
---|
292 | if (BestSolutionQualityParameter.ActualValue == null || BestSolutionQualityParameter.ActualValue.Value > bestValidationNmse) {
|
---|
293 | var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicTimeSeriesExpressionInterpreter)SymbolicExpressionTreeInterpreter.Clone(), bestTree);
|
---|
294 | model.Name = "Time series prognosis model";
|
---|
295 | model.Description = "Best solution on validation partition found over the whole run.";
|
---|
296 |
|
---|
297 | var solution = new SymbolicTimeSeriesPrognosisSolution(ProblemData, model, PredictionHorizon.Value);
|
---|
298 | solution.Name = BestSolutionParameterName;
|
---|
299 | solution.Description = "Best solution on validation partition found over the whole run.";
|
---|
300 |
|
---|
301 | BestSolutionParameter.ActualValue = solution;
|
---|
302 | BestSolutionQualityParameter.ActualValue = new DoubleValue(bestValidationNmse);
|
---|
303 |
|
---|
304 | // BestSymbolicTimeSeriesPrognosisSolutionAnalyzer.UpdateBestSolutionResults(solution, ProblemData, Results, Generations, VariableFrequencies);
|
---|
305 | }
|
---|
306 |
|
---|
307 | if (!Results.ContainsKey(BestSolutionQualityValuesParameterName)) {
|
---|
308 | Results.Add(new Result(BestSolutionResultName, BestSolutionParameter.ActualValue));
|
---|
309 | Results.Add(new Result(BestSolutionQualityValuesParameterName, new DataTable(BestSolutionQualityValuesParameterName, BestSolutionQualityValuesParameterName)));
|
---|
310 | Results.Add(new Result(BestSolutionQualityParameterName, new DoubleValue()));
|
---|
311 | Results.Add(new Result(CurrentBestValidationQualityParameterName, new DoubleValue()));
|
---|
312 | }
|
---|
313 | Results[BestSolutionResultName].Value = BestSolutionParameter.ActualValue;
|
---|
314 | Results[BestSolutionQualityParameterName].Value = new DoubleValue(BestSolutionQualityParameter.ActualValue.Value);
|
---|
315 | Results[CurrentBestValidationQualityParameterName].Value = new DoubleValue(bestValidationNmse);
|
---|
316 |
|
---|
317 | DataTable validationValues = (DataTable)Results[BestSolutionQualityValuesParameterName].Value;
|
---|
318 | AddValue(validationValues, BestSolutionQualityParameter.ActualValue.Value, BestSolutionQualityParameterName, BestSolutionQualityParameterName);
|
---|
319 | AddValue(validationValues, bestValidationNmse, CurrentBestValidationQualityParameterName, CurrentBestValidationQualityParameterName);
|
---|
320 | #endregion
|
---|
321 | return base.Apply();
|
---|
322 | }
|
---|
323 |
|
---|
324 | [StorableHook(HookType.AfterDeserialization)]
|
---|
325 | private void Initialize() {
|
---|
326 | }
|
---|
327 |
|
---|
328 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
329 | DataRow row;
|
---|
330 | table.Rows.TryGetValue(name, out row);
|
---|
331 | if (row == null) {
|
---|
332 | row = new DataRow(name, description);
|
---|
333 | row.Values.Add(data);
|
---|
334 | table.Rows.Add(row);
|
---|
335 | } else {
|
---|
336 | row.Values.Add(data);
|
---|
337 | }
|
---|
338 | }
|
---|
339 | }
|
---|
340 | }
|
---|