1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using System.Text;
|
---|
5 | using HeuristicLab.Core;
|
---|
6 | using HeuristicLab.Data;
|
---|
7 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
8 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
9 | using HeuristicLab.Parameters;
|
---|
10 |
|
---|
11 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis {
|
---|
12 | public class OnlineTheilsUStatisticEvaluator : IOnlineTimeSeriesPrognosisEvaluator {
|
---|
13 | private OnlineMeanAndVarianceCalculator squaredErrorMeanCalculator;
|
---|
14 | private OnlineMeanAndVarianceCalculator unbiasedEstimatorMeanCalculator;
|
---|
15 | private double prevOriginal;
|
---|
16 | private int windowSize;
|
---|
17 | private Queue<double> movingAverageWindow;
|
---|
18 |
|
---|
19 | public double TheilsUStatistic {
|
---|
20 | get {
|
---|
21 | return Math.Sqrt(squaredErrorMeanCalculator.Mean) / Math.Sqrt(unbiasedEstimatorMeanCalculator.Mean);
|
---|
22 | }
|
---|
23 | }
|
---|
24 |
|
---|
25 | public OnlineTheilsUStatisticEvaluator()
|
---|
26 | : this(1) {
|
---|
27 | }
|
---|
28 |
|
---|
29 | public OnlineTheilsUStatisticEvaluator(int movingAverageWindowSize) {
|
---|
30 | this.windowSize = movingAverageWindowSize;
|
---|
31 | movingAverageWindow = new Queue<double>(windowSize);
|
---|
32 | squaredErrorMeanCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
33 | unbiasedEstimatorMeanCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
34 | Reset();
|
---|
35 | }
|
---|
36 |
|
---|
37 | #region IOnlineEvaluator Members
|
---|
38 | public double Value {
|
---|
39 | get { return TheilsUStatistic; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public void Add(double original, double estimated) {
|
---|
43 | if (double.IsInfinity(original) || double.IsNaN(original) || double.IsInfinity(estimated) || double.IsNaN(estimated)) {
|
---|
44 | throw new ArgumentException("Theil's U-statistic is not defined for series containing NaN or infinity values.");
|
---|
45 | }
|
---|
46 |
|
---|
47 | if (!double.IsNaN(prevOriginal)) {
|
---|
48 | // error of predicted change
|
---|
49 | double errorEstimatedChange = (estimated - original);
|
---|
50 | squaredErrorMeanCalculator.Add(errorEstimatedChange * errorEstimatedChange);
|
---|
51 |
|
---|
52 | // calculate trend observed in the MA window
|
---|
53 | double d = CalculateTrend(movingAverageWindow);
|
---|
54 |
|
---|
55 | // shift window forward
|
---|
56 | if (movingAverageWindow.Count == windowSize) {
|
---|
57 | movingAverageWindow.Dequeue();
|
---|
58 | }
|
---|
59 | movingAverageWindow.Enqueue(original);
|
---|
60 |
|
---|
61 | double errorNoChange = (original - prevOriginal * (1+d));
|
---|
62 | unbiasedEstimatorMeanCalculator.Add(errorNoChange * errorNoChange);
|
---|
63 | }
|
---|
64 | }
|
---|
65 |
|
---|
66 | private double CalculateTrend(Queue<double> movingAverageWindow) {
|
---|
67 | double[] xs = movingAverageWindow.ToArray();
|
---|
68 | double sum = 0.0;
|
---|
69 | for (int i = 0; i < xs.Length - 1; i++) {
|
---|
70 | sum += (xs[i + 1] - xs[i]) / xs[i];
|
---|
71 | }
|
---|
72 | return sum / xs.Length;
|
---|
73 | }
|
---|
74 |
|
---|
75 | public void Reset() {
|
---|
76 | prevOriginal = double.NaN;
|
---|
77 | squaredErrorMeanCalculator.Reset();
|
---|
78 | unbiasedEstimatorMeanCalculator.Reset();
|
---|
79 | movingAverageWindow.Clear();
|
---|
80 | }
|
---|
81 |
|
---|
82 | #endregion
|
---|
83 |
|
---|
84 | #region IOnlineTimeSeriesPrognosisEvaluator Members
|
---|
85 |
|
---|
86 | public void StartNewPredictionWindow(double referenceOriginalValue) {
|
---|
87 | prevOriginal = referenceOriginalValue;
|
---|
88 | movingAverageWindow.Enqueue(referenceOriginalValue);
|
---|
89 | }
|
---|
90 |
|
---|
91 | #endregion
|
---|
92 | }
|
---|
93 | }
|
---|