[4401] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System;
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.ComponentModel;
|
---|
| 24 | using System.Drawing;
|
---|
| 25 | using System.Data;
|
---|
| 26 | using System.Linq;
|
---|
| 27 | using System.Text;
|
---|
| 28 | using System.Windows.Forms;
|
---|
| 29 | using HeuristicLab.MainForm;
|
---|
| 30 | using HeuristicLab.MainForm.WindowsForms;
|
---|
| 31 | using HeuristicLab.Data.Views;
|
---|
| 32 | using HeuristicLab.Data;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
| 34 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic;
|
---|
| 35 |
|
---|
| 36 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Views {
|
---|
| 37 | [Content(typeof(SymbolicTimeSeriesPrognosisSolution), true)]
|
---|
| 38 | [View("Time Series Prognosis Results View")]
|
---|
| 39 | public partial class ResultsView : AsynchronousContentView {
|
---|
| 40 | private List<string> rowNames = new List<string>() {
|
---|
| 41 | "Mean squared error",
|
---|
| 42 | "Pearson's R²",
|
---|
| 43 | "Mean relative error",
|
---|
| 44 | "Directional symmetry",
|
---|
| 45 | "Weighted directional symmetry",
|
---|
| 46 | "Theil's U"
|
---|
| 47 | };
|
---|
| 48 |
|
---|
| 49 | public ResultsView() {
|
---|
| 50 | InitializeComponent();
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | public new SymbolicTimeSeriesPrognosisSolution Content {
|
---|
| 54 | get { return (SymbolicTimeSeriesPrognosisSolution)base.Content; }
|
---|
| 55 | set { base.Content = value; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | protected override void RegisterContentEvents() {
|
---|
| 59 | base.RegisterContentEvents();
|
---|
| 60 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
| 61 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
| 62 | Content.EstimatedValuesChanged += new EventHandler(Content_EstimatedValuesChanged);
|
---|
| 63 | }
|
---|
| 64 | protected override void DeregisterContentEvents() {
|
---|
| 65 | base.DeregisterContentEvents();
|
---|
| 66 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
| 67 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
| 68 | Content.EstimatedValuesChanged -= new EventHandler(Content_EstimatedValuesChanged);
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
| 72 | UpdateView();
|
---|
| 73 | }
|
---|
| 74 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
| 75 | UpdateView();
|
---|
| 76 | }
|
---|
| 77 | private void Content_EstimatedValuesChanged(object sender, EventArgs e) {
|
---|
| 78 | UpdateView();
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | protected override void OnContentChanged() {
|
---|
| 82 | base.OnContentChanged();
|
---|
| 83 | UpdateView();
|
---|
| 84 | }
|
---|
| 85 | private void UpdateView() {
|
---|
| 86 | if (Content != null) {
|
---|
| 87 | List<string> targetVariables = Content.ProblemData.TargetVariables.CheckedItems.Select(x => x.Value.Value).ToList();
|
---|
| 88 | DoubleMatrix matrix = new DoubleMatrix(rowNames.Count, targetVariables.Count() * 2);
|
---|
| 89 | matrix.RowNames = rowNames;
|
---|
| 90 | matrix.ColumnNames = targetVariables.SelectMany(x => new List<string>() { x + " (training)", x + " (test)" });
|
---|
| 91 | matrix.SortableView = false;
|
---|
| 92 |
|
---|
| 93 | int trainingStart = Content.ProblemData.TrainingSamplesStart.Value;
|
---|
| 94 | int trainingEnd = Content.ProblemData.TrainingSamplesEnd.Value;
|
---|
| 95 | int testStart = Content.ProblemData.TestSamplesStart.Value;
|
---|
| 96 | int testEnd = Content.ProblemData.TestSamplesEnd.Value;
|
---|
| 97 | // create a list of time series evaluators for each target variable
|
---|
| 98 | Dictionary<string, List<IOnlineEvaluator>> trainingEvaluators =
|
---|
| 99 | new Dictionary<string, List<IOnlineEvaluator>>();
|
---|
| 100 | Dictionary<string, List<IOnlineEvaluator>> testEvaluators =
|
---|
| 101 | new Dictionary<string, List<IOnlineEvaluator>>();
|
---|
| 102 | foreach (string targetVariable in targetVariables) {
|
---|
| 103 | trainingEvaluators.Add(targetVariable, new List<IOnlineEvaluator>());
|
---|
| 104 | trainingEvaluators[targetVariable].Add(new OnlineMeanSquaredErrorEvaluator());
|
---|
| 105 | trainingEvaluators[targetVariable].Add(new OnlinePearsonsRSquaredEvaluator());
|
---|
| 106 | trainingEvaluators[targetVariable].Add(new OnlineMeanAbsolutePercentageErrorEvaluator());
|
---|
| 107 | trainingEvaluators[targetVariable].Add(new OnlineDirectionalSymmetryEvaluator());
|
---|
| 108 | trainingEvaluators[targetVariable].Add(new OnlineWeightedDirectionalSymmetryEvaluator());
|
---|
| 109 | trainingEvaluators[targetVariable].Add(new OnlineTheilsUStatisticEvaluator());
|
---|
| 110 |
|
---|
| 111 | testEvaluators.Add(targetVariable, new List<IOnlineEvaluator>());
|
---|
| 112 | testEvaluators[targetVariable].Add(new OnlineMeanSquaredErrorEvaluator());
|
---|
| 113 | testEvaluators[targetVariable].Add(new OnlinePearsonsRSquaredEvaluator());
|
---|
| 114 | testEvaluators[targetVariable].Add(new OnlineMeanAbsolutePercentageErrorEvaluator());
|
---|
| 115 | testEvaluators[targetVariable].Add(new OnlineDirectionalSymmetryEvaluator());
|
---|
| 116 | testEvaluators[targetVariable].Add(new OnlineWeightedDirectionalSymmetryEvaluator());
|
---|
| 117 | testEvaluators[targetVariable].Add(new OnlineTheilsUStatisticEvaluator());
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | Evaluate(trainingStart, trainingEnd, trainingEvaluators);
|
---|
| 121 | Evaluate(testStart, testEnd, testEvaluators);
|
---|
| 122 |
|
---|
| 123 | int columnIndex = 0;
|
---|
| 124 | foreach (string targetVariable in targetVariables) {
|
---|
| 125 | int rowIndex = 0;
|
---|
| 126 | // training
|
---|
| 127 | foreach (var evaluator in trainingEvaluators[targetVariable]) {
|
---|
| 128 | matrix[rowIndex++, columnIndex] = evaluator.Value;
|
---|
| 129 | }
|
---|
| 130 | columnIndex++;
|
---|
| 131 | // test
|
---|
| 132 | rowIndex = 0;
|
---|
| 133 | foreach (var evaluator in testEvaluators[targetVariable]) {
|
---|
| 134 | matrix[rowIndex++, columnIndex] = evaluator.Value;
|
---|
| 135 | }
|
---|
| 136 | columnIndex++;
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | matrixView.Content = matrix;
|
---|
| 140 | } else
|
---|
| 141 | matrixView.Content = null;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | private void Evaluate(int start, int end, Dictionary<string, List<IOnlineEvaluator>> evaluators) {
|
---|
| 145 |
|
---|
| 146 | for (int row = start; row < end; row++) {
|
---|
[4457] | 147 | if (string.IsNullOrEmpty(Content.ConditionalEvaluationVariable) || Content.ProblemData.Dataset[Content.ConditionalEvaluationVariable, row] != 0) {
|
---|
| 148 | // prepare evaluators for each target variable for a new prediction window
|
---|
| 149 | foreach (var entry in evaluators) {
|
---|
| 150 | double referenceOriginalValue = Content.ProblemData.Dataset[entry.Key, row - 1];
|
---|
| 151 | foreach (IOnlineTimeSeriesPrognosisEvaluator evaluator in entry.Value.OfType<IOnlineTimeSeriesPrognosisEvaluator>()) {
|
---|
| 152 | evaluator.StartNewPredictionWindow(referenceOriginalValue);
|
---|
| 153 | }
|
---|
[4401] | 154 | }
|
---|
[4457] | 155 | List<string> targetVariables = Content.ProblemData.TargetVariables.CheckedItems.Select(x => x.Value.Value).ToList();
|
---|
[4401] | 156 |
|
---|
[4556] | 157 | if (string.IsNullOrEmpty(Content.ConditionalEvaluationVariable) ||
|
---|
| 158 | Content.ProblemData.Dataset[Content.ConditionalEvaluationVariable, row] > 0) {
|
---|
| 159 | int timestep = 0;
|
---|
| 160 | foreach (double[] x in Content.GetPrognosis(row)) {
|
---|
| 161 | int targetIndex = 0;
|
---|
| 162 | if (row + timestep < Content.ProblemData.Dataset.Rows) {
|
---|
| 163 | foreach (var targetVariable in targetVariables) {
|
---|
| 164 | double originalValue = Content.ProblemData.Dataset[targetVariable, row + timestep];
|
---|
| 165 | double estimatedValue = x[targetIndex];
|
---|
| 166 | if (IsValidValue(originalValue) && IsValidValue(estimatedValue)) {
|
---|
| 167 | foreach (IOnlineEvaluator evaluator in evaluators[targetVariable]) {
|
---|
| 168 | evaluator.Add(originalValue, estimatedValue);
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | targetIndex++;
|
---|
[4457] | 172 | }
|
---|
[4401] | 173 | }
|
---|
[4556] | 174 | timestep++;
|
---|
[4401] | 175 | }
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | private bool IsValidValue(double d) {
|
---|
| 182 | return !(double.IsNaN(d) || double.IsInfinity(d));
|
---|
| 183 | }
|
---|
| 184 | }
|
---|
| 185 | }
|
---|