1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Windows.Forms;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Views;
|
---|
31 | using HeuristicLab.MainForm.WindowsForms;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Interfaces;
|
---|
36 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Evaluators;
|
---|
37 | using HeuristicLab.Data;
|
---|
38 |
|
---|
39 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Views {
|
---|
40 | public partial class InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView : AsynchronousContentView {
|
---|
41 | private SymbolicExpressionTree simplifiedExpressionTree;
|
---|
42 | private ISymbolicTimeSeriesExpressionInterpreter interpreter;
|
---|
43 | private DoubleArray lowerEstimationLimit;
|
---|
44 | private DoubleArray upperEstimationLimit;
|
---|
45 | private string conditionVariableName;
|
---|
46 | private IEnumerable<string> targetVariables;
|
---|
47 | private int horizon;
|
---|
48 | private Dictionary<SymbolicExpressionTreeNode, ConstantTreeNode> replacementNodes;
|
---|
49 | private Dictionary<SymbolicExpressionTreeNode, double> nodeImpacts;
|
---|
50 |
|
---|
51 | public InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView() {
|
---|
52 | InitializeComponent();
|
---|
53 | this.replacementNodes = new Dictionary<SymbolicExpressionTreeNode, ConstantTreeNode>();
|
---|
54 | this.nodeImpacts = new Dictionary<SymbolicExpressionTreeNode, double>();
|
---|
55 | this.simplifiedExpressionTree = null;
|
---|
56 | this.Caption = "Interactive Solution Simplifier";
|
---|
57 | }
|
---|
58 |
|
---|
59 | public new SymbolicTimeSeriesPrognosisSolution Content {
|
---|
60 | get { return (SymbolicTimeSeriesPrognosisSolution)base.Content; }
|
---|
61 | set { base.Content = value; }
|
---|
62 | }
|
---|
63 |
|
---|
64 | protected override void RegisterContentEvents() {
|
---|
65 | base.RegisterContentEvents();
|
---|
66 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
67 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
68 | }
|
---|
69 | protected override void DeregisterContentEvents() {
|
---|
70 | base.DeregisterContentEvents();
|
---|
71 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
72 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
73 | }
|
---|
74 |
|
---|
75 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
76 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
77 | }
|
---|
78 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
79 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
80 | }
|
---|
81 |
|
---|
82 | protected override void OnContentChanged() {
|
---|
83 | base.OnContentChanged();
|
---|
84 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
85 | this.viewHost.Content = this.Content;
|
---|
86 | }
|
---|
87 |
|
---|
88 | private void CalculateReplacementNodesAndNodeImpacts() {
|
---|
89 | this.replacementNodes.Clear();
|
---|
90 | this.nodeImpacts.Clear();
|
---|
91 | if (Content != null && Content.Model != null && Content.ProblemData != null) {
|
---|
92 | SymbolicSimplifier simplifier = new SymbolicSimplifier();
|
---|
93 | simplifiedExpressionTree = simplifier.Simplify(Content.Model.SymbolicExpressionTree);
|
---|
94 | int samplesStart = Content.ProblemData.TrainingSamplesStart.Value;
|
---|
95 | int samplesEnd = Content.ProblemData.TrainingSamplesEnd.Value;
|
---|
96 |
|
---|
97 | double quality;
|
---|
98 | conditionVariableName = Content.ConditionalEvaluationVariable;
|
---|
99 | targetVariables = Content.ProblemData.TargetVariables.CheckedItems.Select(x => x.Value.Value);
|
---|
100 | int nTargetVariables = Content.ProblemData.TargetVariables.CheckedItems.Count();
|
---|
101 | interpreter = Content.Model.Interpreter;
|
---|
102 | horizon = Content.Horizon;
|
---|
103 | IEnumerable<int> rows = Enumerable.Range(samplesStart, samplesEnd - samplesStart);
|
---|
104 | if (!string.IsNullOrEmpty(conditionVariableName)) {
|
---|
105 | rows = (from row in rows
|
---|
106 | where !Content.ProblemData.Dataset[conditionVariableName, row].IsAlmost(0.0)
|
---|
107 | select row).ToList();
|
---|
108 | }
|
---|
109 | lowerEstimationLimit = new DoubleArray(nTargetVariables);
|
---|
110 | upperEstimationLimit = new DoubleArray(nTargetVariables);
|
---|
111 | for (int i = 0; i < nTargetVariables; i++) {
|
---|
112 | lowerEstimationLimit[i] = Content.GetLowerEstimationLimit(i);
|
---|
113 | upperEstimationLimit[i] = Content.GetUpperEstimationLimit(i);
|
---|
114 | }
|
---|
115 | quality = SymbolicTimeSeriesPrognosisScaledNormalizedMseEvaluator.Calculate(simplifiedExpressionTree, Content.ProblemData, interpreter,
|
---|
116 | rows, horizon,
|
---|
117 | lowerEstimationLimit, upperEstimationLimit);
|
---|
118 |
|
---|
119 | this.CalculateReplacementNodes();
|
---|
120 |
|
---|
121 | this.CalculateNodeImpacts(simplifiedExpressionTree, simplifiedExpressionTree.Root, quality, rows);
|
---|
122 | // show only interesing part
|
---|
123 | this.treeChart.Tree = new SymbolicExpressionTree(simplifiedExpressionTree.Root.SubTrees[0]);
|
---|
124 | this.PaintNodeImpacts();
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | private void CalculateReplacementNodes() {
|
---|
129 | IEnumerable<int> trainingSamples = Enumerable.Range(Content.ProblemData.TrainingSamplesStart.Value, Content.ProblemData.TrainingSamplesEnd.Value - Content.ProblemData.TrainingSamplesStart.Value);
|
---|
130 | SymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
|
---|
131 | SymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
|
---|
132 | root.AddSubTree(start);
|
---|
133 | SymbolicExpressionTree tree = new SymbolicExpressionTree(root);
|
---|
134 | foreach (SymbolicExpressionTreeNode node in this.simplifiedExpressionTree.IterateNodesPrefix()) {
|
---|
135 | if (!(node.Symbol is StartSymbol || node.Symbol is ProgramRootSymbol)) {
|
---|
136 | while (start.SubTrees.Count > 0) start.RemoveSubTree(0);
|
---|
137 | start.AddSubTree(node);
|
---|
138 | // we only want a scalar replacement value for the single branch that should be evaluated
|
---|
139 | // so assume we only create an estimation for the first target variable
|
---|
140 | double constantTreeNodeValue = interpreter.GetSymbolicExpressionTreeValues(tree, Content.ProblemData.Dataset, targetVariables.Take(1) , trainingSamples, 1).Select(x => x[0]).Median();
|
---|
141 | ConstantTreeNode constantTreeNode = MakeConstantTreeNode(constantTreeNodeValue);
|
---|
142 | replacementNodes[node] = constantTreeNode;
|
---|
143 | }
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | private void CalculateNodeImpacts(SymbolicExpressionTree tree, SymbolicExpressionTreeNode currentTreeNode, double originalQuality, IEnumerable<int> rows) {
|
---|
148 | foreach (SymbolicExpressionTreeNode childNode in currentTreeNode.SubTrees.ToList()) {
|
---|
149 | if (!(childNode.Symbol is StartSymbol || childNode.Symbol is ProgramRootSymbol)) {
|
---|
150 | SwitchNode(currentTreeNode, childNode, replacementNodes[childNode]);
|
---|
151 | int horizon = Content.Horizon;
|
---|
152 |
|
---|
153 | double newQuality = SymbolicTimeSeriesPrognosisScaledNormalizedMseEvaluator.Calculate(tree, Content.ProblemData, interpreter,
|
---|
154 | rows, horizon,
|
---|
155 | lowerEstimationLimit, upperEstimationLimit);
|
---|
156 |
|
---|
157 | nodeImpacts[childNode] = newQuality / originalQuality;
|
---|
158 | SwitchNode(currentTreeNode, replacementNodes[childNode], childNode);
|
---|
159 | }
|
---|
160 | CalculateNodeImpacts(tree, childNode, originalQuality, rows);
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | private void SwitchNode(SymbolicExpressionTreeNode root, SymbolicExpressionTreeNode oldBranch, SymbolicExpressionTreeNode newBranch) {
|
---|
165 | for (int i = 0; i < root.SubTrees.Count; i++) {
|
---|
166 | if (root.SubTrees[i] == oldBranch) {
|
---|
167 | root.RemoveSubTree(i);
|
---|
168 | root.InsertSubTree(i, newBranch);
|
---|
169 | return;
|
---|
170 | }
|
---|
171 | }
|
---|
172 | }
|
---|
173 |
|
---|
174 | private ConstantTreeNode MakeConstantTreeNode(double value) {
|
---|
175 | Constant constant = new Constant();
|
---|
176 | constant.MinValue = value - 1;
|
---|
177 | constant.MaxValue = value + 1;
|
---|
178 | ConstantTreeNode constantTreeNode = (ConstantTreeNode)constant.CreateTreeNode();
|
---|
179 | constantTreeNode.Value = value;
|
---|
180 | return constantTreeNode;
|
---|
181 | }
|
---|
182 |
|
---|
183 | private void treeChart_SymbolicExpressionTreeNodeDoubleClicked(object sender, MouseEventArgs e) {
|
---|
184 | VisualSymbolicExpressionTreeNode visualTreeNode = (VisualSymbolicExpressionTreeNode)sender;
|
---|
185 | foreach (SymbolicExpressionTreeNode treeNode in simplifiedExpressionTree.IterateNodesPostfix()) {
|
---|
186 | for (int i = 0; i < treeNode.SubTrees.Count; i++) {
|
---|
187 | SymbolicExpressionTreeNode subTree = treeNode.SubTrees[i];
|
---|
188 | if (subTree == visualTreeNode.SymbolicExpressionTreeNode) {
|
---|
189 | if (replacementNodes.ContainsKey(subTree)) {
|
---|
190 | treeNode.RemoveSubTree(i);
|
---|
191 | treeNode.InsertSubTree(i, replacementNodes[subTree]);
|
---|
192 | } else if (subTree is ConstantTreeNode && replacementNodes.ContainsValue((ConstantTreeNode)subTree)) {
|
---|
193 | treeNode.RemoveSubTree(i);
|
---|
194 | treeNode.InsertSubTree(i, replacementNodes.Where(v => v.Value == subTree).Single().Key);
|
---|
195 | }
|
---|
196 | // if no replacement value is known do nothing
|
---|
197 | }
|
---|
198 | }
|
---|
199 | }
|
---|
200 | // show only interesting part
|
---|
201 | this.treeChart.Tree = new SymbolicExpressionTree(simplifiedExpressionTree.Root.SubTrees[0]);
|
---|
202 |
|
---|
203 | SymbolicExpressionTree tree = (SymbolicExpressionTree)simplifiedExpressionTree.Clone();
|
---|
204 |
|
---|
205 | this.Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
206 | this.Content.Model = new SymbolicTimeSeriesPrognosisModel(Content.Model.Interpreter, tree);
|
---|
207 | this.Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
208 |
|
---|
209 | this.PaintNodeImpacts();
|
---|
210 | }
|
---|
211 |
|
---|
212 | private void PaintNodeImpacts() {
|
---|
213 | var impacts = nodeImpacts.Values;
|
---|
214 | double max = impacts.Max();
|
---|
215 | double min = impacts.Min();
|
---|
216 | foreach (SymbolicExpressionTreeNode treeNode in simplifiedExpressionTree.IterateNodesPostfix()) {
|
---|
217 | if (!(treeNode is ConstantTreeNode) && nodeImpacts.ContainsKey(treeNode)) {
|
---|
218 | double impact = nodeImpacts[treeNode];
|
---|
219 | double replacementValue = replacementNodes[treeNode].Value;
|
---|
220 | VisualSymbolicExpressionTreeNode visualTree = treeChart.GetVisualSymbolicExpressionTreeNode(treeNode);
|
---|
221 |
|
---|
222 | if (impact < 1.0) {
|
---|
223 | visualTree.FillColor = Color.FromArgb((int)((1.0 - impact) * 255), Color.Red);
|
---|
224 | } else {
|
---|
225 | visualTree.FillColor = Color.FromArgb((int)((impact - 1.0) / max * 255), Color.Green);
|
---|
226 | }
|
---|
227 | visualTree.ToolTip += Environment.NewLine + "Node impact: " + impact;
|
---|
228 | visualTree.ToolTip += Environment.NewLine + "Replacement value: " + replacementValue;
|
---|
229 | }
|
---|
230 | }
|
---|
231 | this.PaintCollapsedNodes();
|
---|
232 | this.treeChart.Repaint();
|
---|
233 | }
|
---|
234 |
|
---|
235 | private void PaintCollapsedNodes() {
|
---|
236 | foreach (SymbolicExpressionTreeNode treeNode in simplifiedExpressionTree.IterateNodesPostfix()) {
|
---|
237 | if (treeNode is ConstantTreeNode && replacementNodes.ContainsValue((ConstantTreeNode)treeNode))
|
---|
238 | this.treeChart.GetVisualSymbolicExpressionTreeNode(treeNode).LineColor = Color.DarkOrange;
|
---|
239 | else {
|
---|
240 | VisualSymbolicExpressionTreeNode visNode = treeChart.GetVisualSymbolicExpressionTreeNode(treeNode);
|
---|
241 | if (visNode != null)
|
---|
242 | visNode.LineColor = Color.Black;
|
---|
243 | }
|
---|
244 | }
|
---|
245 | }
|
---|
246 |
|
---|
247 | private void btnSimplify_Click(object sender, EventArgs e) {
|
---|
248 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
249 | }
|
---|
250 | }
|
---|
251 | }
|
---|