[4463] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Drawing;
|
---|
| 25 | using System.Linq;
|
---|
| 26 | using System.Windows.Forms;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
| 30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Views;
|
---|
| 31 | using HeuristicLab.MainForm.WindowsForms;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
| 34 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic;
|
---|
| 35 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Interfaces;
|
---|
| 36 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Symbolic.Evaluators;
|
---|
| 37 | using HeuristicLab.Data;
|
---|
| 38 |
|
---|
| 39 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.TimeSeriesPrognosis.Views {
|
---|
| 40 | public partial class InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView : AsynchronousContentView {
|
---|
| 41 | private SymbolicExpressionTree simplifiedExpressionTree;
|
---|
| 42 | private ISymbolicTimeSeriesExpressionInterpreter interpreter;
|
---|
| 43 | private DoubleArray lowerEstimationLimit;
|
---|
| 44 | private DoubleArray upperEstimationLimit;
|
---|
| 45 | private string conditionVariableName;
|
---|
| 46 | private IEnumerable<string> targetVariables;
|
---|
| 47 | private int horizon;
|
---|
| 48 | private Dictionary<SymbolicExpressionTreeNode, ConstantTreeNode> replacementNodes;
|
---|
| 49 | private Dictionary<SymbolicExpressionTreeNode, double> nodeImpacts;
|
---|
| 50 |
|
---|
| 51 | public InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView() {
|
---|
| 52 | InitializeComponent();
|
---|
| 53 | this.replacementNodes = new Dictionary<SymbolicExpressionTreeNode, ConstantTreeNode>();
|
---|
| 54 | this.nodeImpacts = new Dictionary<SymbolicExpressionTreeNode, double>();
|
---|
| 55 | this.simplifiedExpressionTree = null;
|
---|
| 56 | this.Caption = "Interactive Solution Simplifier";
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | public new SymbolicTimeSeriesPrognosisSolution Content {
|
---|
| 60 | get { return (SymbolicTimeSeriesPrognosisSolution)base.Content; }
|
---|
| 61 | set { base.Content = value; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | protected override void RegisterContentEvents() {
|
---|
| 65 | base.RegisterContentEvents();
|
---|
| 66 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
| 67 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
| 68 | }
|
---|
| 69 | protected override void DeregisterContentEvents() {
|
---|
| 70 | base.DeregisterContentEvents();
|
---|
| 71 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
| 72 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
| 76 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
| 77 | }
|
---|
| 78 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
| 79 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | protected override void OnContentChanged() {
|
---|
| 83 | base.OnContentChanged();
|
---|
| 84 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
| 85 | this.viewHost.Content = this.Content;
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | private void CalculateReplacementNodesAndNodeImpacts() {
|
---|
| 89 | this.replacementNodes.Clear();
|
---|
| 90 | this.nodeImpacts.Clear();
|
---|
| 91 | if (Content != null && Content.Model != null && Content.ProblemData != null) {
|
---|
| 92 | SymbolicSimplifier simplifier = new SymbolicSimplifier();
|
---|
| 93 | simplifiedExpressionTree = simplifier.Simplify(Content.Model.SymbolicExpressionTree);
|
---|
| 94 | int samplesStart = Content.ProblemData.TrainingSamplesStart.Value;
|
---|
| 95 | int samplesEnd = Content.ProblemData.TrainingSamplesEnd.Value;
|
---|
| 96 |
|
---|
| 97 | double quality;
|
---|
| 98 | conditionVariableName = Content.ConditionalEvaluationVariable;
|
---|
| 99 | targetVariables = Content.ProblemData.TargetVariables.CheckedItems.Select(x => x.Value.Value);
|
---|
| 100 | int nTargetVariables = Content.ProblemData.TargetVariables.CheckedItems.Count();
|
---|
| 101 | interpreter = Content.Model.Interpreter;
|
---|
| 102 | horizon = Content.Horizon;
|
---|
| 103 | IEnumerable<int> rows = Enumerable.Range(samplesStart, samplesEnd - samplesStart);
|
---|
[4475] | 104 | if (!string.IsNullOrEmpty(conditionVariableName)) {
|
---|
| 105 | rows = (from row in rows
|
---|
| 106 | where !Content.ProblemData.Dataset[conditionVariableName, row].IsAlmost(0.0)
|
---|
| 107 | select row).ToList();
|
---|
| 108 | }
|
---|
| 109 | lowerEstimationLimit = new DoubleArray(nTargetVariables);
|
---|
| 110 | upperEstimationLimit = new DoubleArray(nTargetVariables);
|
---|
| 111 | for (int i = 0; i < nTargetVariables; i++) {
|
---|
| 112 | lowerEstimationLimit[i] = Content.GetLowerEstimationLimit(i);
|
---|
| 113 | upperEstimationLimit[i] = Content.GetUpperEstimationLimit(i);
|
---|
| 114 | }
|
---|
| 115 | quality = SymbolicTimeSeriesPrognosisScaledNormalizedMseEvaluator.Calculate(simplifiedExpressionTree, Content.ProblemData, interpreter,
|
---|
| 116 | rows, horizon,
|
---|
| 117 | lowerEstimationLimit, upperEstimationLimit);
|
---|
[4463] | 118 |
|
---|
| 119 | this.CalculateReplacementNodes();
|
---|
| 120 |
|
---|
[4475] | 121 | this.CalculateNodeImpacts(simplifiedExpressionTree, simplifiedExpressionTree.Root, quality, rows);
|
---|
[4464] | 122 | // show only interesing part
|
---|
[4463] | 123 | this.treeChart.Tree = new SymbolicExpressionTree(simplifiedExpressionTree.Root.SubTrees[0]);
|
---|
| 124 | this.PaintNodeImpacts();
|
---|
| 125 | }
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | private void CalculateReplacementNodes() {
|
---|
| 129 | IEnumerable<int> trainingSamples = Enumerable.Range(Content.ProblemData.TrainingSamplesStart.Value, Content.ProblemData.TrainingSamplesEnd.Value - Content.ProblemData.TrainingSamplesStart.Value);
|
---|
| 130 | SymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
|
---|
| 131 | SymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
|
---|
| 132 | root.AddSubTree(start);
|
---|
| 133 | SymbolicExpressionTree tree = new SymbolicExpressionTree(root);
|
---|
| 134 | foreach (SymbolicExpressionTreeNode node in this.simplifiedExpressionTree.IterateNodesPrefix()) {
|
---|
[4464] | 135 | if (!(node.Symbol is StartSymbol || node.Symbol is ProgramRootSymbol)) {
|
---|
[4463] | 136 | while (start.SubTrees.Count > 0) start.RemoveSubTree(0);
|
---|
| 137 | start.AddSubTree(node);
|
---|
[4475] | 138 | // we only want a scalar replacement value for the single branch that should be evaluated
|
---|
| 139 | // so assume we only create an estimation for the first target variable
|
---|
| 140 | double constantTreeNodeValue = interpreter.GetSymbolicExpressionTreeValues(tree, Content.ProblemData.Dataset, targetVariables.Take(1) , trainingSamples, 1).Select(x => x[0]).Median();
|
---|
[4463] | 141 | ConstantTreeNode constantTreeNode = MakeConstantTreeNode(constantTreeNodeValue);
|
---|
| 142 | replacementNodes[node] = constantTreeNode;
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 | }
|
---|
| 146 |
|
---|
[4475] | 147 | private void CalculateNodeImpacts(SymbolicExpressionTree tree, SymbolicExpressionTreeNode currentTreeNode, double originalQuality, IEnumerable<int> rows) {
|
---|
[4463] | 148 | foreach (SymbolicExpressionTreeNode childNode in currentTreeNode.SubTrees.ToList()) {
|
---|
[4464] | 149 | if (!(childNode.Symbol is StartSymbol || childNode.Symbol is ProgramRootSymbol)) {
|
---|
[4463] | 150 | SwitchNode(currentTreeNode, childNode, replacementNodes[childNode]);
|
---|
| 151 | int horizon = Content.Horizon;
|
---|
| 152 |
|
---|
[4475] | 153 | double newQuality = SymbolicTimeSeriesPrognosisScaledNormalizedMseEvaluator.Calculate(tree, Content.ProblemData, interpreter,
|
---|
| 154 | rows, horizon,
|
---|
| 155 | lowerEstimationLimit, upperEstimationLimit);
|
---|
[4463] | 156 |
|
---|
| 157 | nodeImpacts[childNode] = newQuality / originalQuality;
|
---|
| 158 | SwitchNode(currentTreeNode, replacementNodes[childNode], childNode);
|
---|
| 159 | }
|
---|
[4475] | 160 | CalculateNodeImpacts(tree, childNode, originalQuality, rows);
|
---|
[4463] | 161 | }
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | private void SwitchNode(SymbolicExpressionTreeNode root, SymbolicExpressionTreeNode oldBranch, SymbolicExpressionTreeNode newBranch) {
|
---|
| 165 | for (int i = 0; i < root.SubTrees.Count; i++) {
|
---|
| 166 | if (root.SubTrees[i] == oldBranch) {
|
---|
| 167 | root.RemoveSubTree(i);
|
---|
| 168 | root.InsertSubTree(i, newBranch);
|
---|
| 169 | return;
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | private ConstantTreeNode MakeConstantTreeNode(double value) {
|
---|
| 175 | Constant constant = new Constant();
|
---|
| 176 | constant.MinValue = value - 1;
|
---|
| 177 | constant.MaxValue = value + 1;
|
---|
| 178 | ConstantTreeNode constantTreeNode = (ConstantTreeNode)constant.CreateTreeNode();
|
---|
| 179 | constantTreeNode.Value = value;
|
---|
| 180 | return constantTreeNode;
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | private void treeChart_SymbolicExpressionTreeNodeDoubleClicked(object sender, MouseEventArgs e) {
|
---|
| 184 | VisualSymbolicExpressionTreeNode visualTreeNode = (VisualSymbolicExpressionTreeNode)sender;
|
---|
| 185 | foreach (SymbolicExpressionTreeNode treeNode in simplifiedExpressionTree.IterateNodesPostfix()) {
|
---|
| 186 | for (int i = 0; i < treeNode.SubTrees.Count; i++) {
|
---|
| 187 | SymbolicExpressionTreeNode subTree = treeNode.SubTrees[i];
|
---|
| 188 | if (subTree == visualTreeNode.SymbolicExpressionTreeNode) {
|
---|
[4464] | 189 | if (replacementNodes.ContainsKey(subTree)) {
|
---|
| 190 | treeNode.RemoveSubTree(i);
|
---|
[4463] | 191 | treeNode.InsertSubTree(i, replacementNodes[subTree]);
|
---|
[4464] | 192 | } else if (subTree is ConstantTreeNode && replacementNodes.ContainsValue((ConstantTreeNode)subTree)) {
|
---|
| 193 | treeNode.RemoveSubTree(i);
|
---|
[4463] | 194 | treeNode.InsertSubTree(i, replacementNodes.Where(v => v.Value == subTree).Single().Key);
|
---|
[4464] | 195 | }
|
---|
| 196 | // if no replacement value is known do nothing
|
---|
[4463] | 197 | }
|
---|
| 198 | }
|
---|
| 199 | }
|
---|
[4464] | 200 | // show only interesting part
|
---|
[4463] | 201 | this.treeChart.Tree = new SymbolicExpressionTree(simplifiedExpressionTree.Root.SubTrees[0]);
|
---|
| 202 |
|
---|
| 203 | SymbolicExpressionTree tree = (SymbolicExpressionTree)simplifiedExpressionTree.Clone();
|
---|
| 204 |
|
---|
| 205 | this.Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
| 206 | this.Content.Model = new SymbolicTimeSeriesPrognosisModel(Content.Model.Interpreter, tree);
|
---|
| 207 | this.Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
| 208 |
|
---|
| 209 | this.PaintNodeImpacts();
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | private void PaintNodeImpacts() {
|
---|
| 213 | var impacts = nodeImpacts.Values;
|
---|
| 214 | double max = impacts.Max();
|
---|
| 215 | double min = impacts.Min();
|
---|
| 216 | foreach (SymbolicExpressionTreeNode treeNode in simplifiedExpressionTree.IterateNodesPostfix()) {
|
---|
| 217 | if (!(treeNode is ConstantTreeNode) && nodeImpacts.ContainsKey(treeNode)) {
|
---|
| 218 | double impact = nodeImpacts[treeNode];
|
---|
| 219 | double replacementValue = replacementNodes[treeNode].Value;
|
---|
| 220 | VisualSymbolicExpressionTreeNode visualTree = treeChart.GetVisualSymbolicExpressionTreeNode(treeNode);
|
---|
| 221 |
|
---|
| 222 | if (impact < 1.0) {
|
---|
| 223 | visualTree.FillColor = Color.FromArgb((int)((1.0 - impact) * 255), Color.Red);
|
---|
| 224 | } else {
|
---|
| 225 | visualTree.FillColor = Color.FromArgb((int)((impact - 1.0) / max * 255), Color.Green);
|
---|
| 226 | }
|
---|
| 227 | visualTree.ToolTip += Environment.NewLine + "Node impact: " + impact;
|
---|
| 228 | visualTree.ToolTip += Environment.NewLine + "Replacement value: " + replacementValue;
|
---|
| 229 | }
|
---|
| 230 | }
|
---|
| 231 | this.PaintCollapsedNodes();
|
---|
| 232 | this.treeChart.Repaint();
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | private void PaintCollapsedNodes() {
|
---|
| 236 | foreach (SymbolicExpressionTreeNode treeNode in simplifiedExpressionTree.IterateNodesPostfix()) {
|
---|
| 237 | if (treeNode is ConstantTreeNode && replacementNodes.ContainsValue((ConstantTreeNode)treeNode))
|
---|
| 238 | this.treeChart.GetVisualSymbolicExpressionTreeNode(treeNode).LineColor = Color.DarkOrange;
|
---|
[4464] | 239 | else {
|
---|
| 240 | VisualSymbolicExpressionTreeNode visNode = treeChart.GetVisualSymbolicExpressionTreeNode(treeNode);
|
---|
| 241 | if (visNode != null)
|
---|
| 242 | visNode.LineColor = Color.Black;
|
---|
| 243 | }
|
---|
[4463] | 244 | }
|
---|
| 245 | }
|
---|
| 246 |
|
---|
| 247 | private void btnSimplify_Click(object sender, EventArgs e) {
|
---|
| 248 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 | }
|
---|