[4056] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
[4068] | 25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
[4056] | 26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[4068] | 27 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.Symbolic;
|
---|
[4056] | 28 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic {
|
---|
| 31 | [StorableClass]
|
---|
| 32 | [Item("SymbolicVectorRegressionGrammar", "Represents a grammar for symbolic vector regression using all available functions.")]
|
---|
| 33 | public class SymbolicVectorRegressionGrammar : MultiVariateExpressionGrammar {
|
---|
| 34 | public SymbolicVectorRegressionGrammar() : this(1) { }
|
---|
[5275] | 35 | [StorableConstructor]
|
---|
| 36 | protected SymbolicVectorRegressionGrammar(bool deserializing) : base(deserializing) { }
|
---|
| 37 | protected SymbolicVectorRegressionGrammar(SymbolicVectorRegressionGrammar original, Cloner cloner)
|
---|
| 38 | : base(original, cloner) {
|
---|
| 39 | }
|
---|
[4056] | 40 | public SymbolicVectorRegressionGrammar(int dimension)
|
---|
| 41 | : base(dimension) {
|
---|
| 42 | Initialize();
|
---|
| 43 | }
|
---|
[5275] | 44 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 45 | return new SymbolicVectorRegressionGrammar(this, cloner);
|
---|
[4401] | 46 | }
|
---|
[4056] | 47 |
|
---|
| 48 | private void Initialize() {
|
---|
| 49 | var add = new Addition();
|
---|
| 50 | var sub = new Subtraction();
|
---|
| 51 | var mul = new Multiplication();
|
---|
| 52 | var div = new Division();
|
---|
| 53 | var mean = new Average();
|
---|
| 54 | var sin = new Sine();
|
---|
| 55 | var cos = new Cosine();
|
---|
| 56 | var tan = new Tangent();
|
---|
| 57 | var log = new Logarithm();
|
---|
| 58 | var exp = new Exponential();
|
---|
| 59 | var @if = new IfThenElse();
|
---|
| 60 | var gt = new GreaterThan();
|
---|
| 61 | var lt = new LessThan();
|
---|
| 62 | var and = new And();
|
---|
| 63 | var or = new Or();
|
---|
| 64 | var not = new Not();
|
---|
| 65 | var constant = new Constant();
|
---|
| 66 | constant.MinValue = -20;
|
---|
| 67 | constant.MaxValue = 20;
|
---|
| 68 | var variableSymbol = new HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable();
|
---|
| 69 |
|
---|
| 70 | var allSymbols = new List<Symbol>() { add, sub, mul, div, mean, sin, cos, tan, log, exp, @if, gt, lt, and, or, not, constant, variableSymbol };
|
---|
| 71 | var unaryFunctionSymbols = new List<Symbol>() { sin, cos, tan, log, exp, not };
|
---|
| 72 | var binaryFunctionSymbols = new List<Symbol>() { gt, lt };
|
---|
| 73 | var functionSymbols = new List<Symbol>() { add, sub, mul, div, mean, and, or };
|
---|
| 74 |
|
---|
| 75 | foreach (var symb in allSymbols)
|
---|
| 76 | AddSymbol(symb);
|
---|
| 77 |
|
---|
| 78 | foreach (var funSymb in functionSymbols) {
|
---|
| 79 | SetMinSubtreeCount(funSymb, 1);
|
---|
| 80 | SetMaxSubtreeCount(funSymb, 3);
|
---|
| 81 | }
|
---|
| 82 | foreach (var funSymb in unaryFunctionSymbols) {
|
---|
| 83 | SetMinSubtreeCount(funSymb, 1);
|
---|
| 84 | SetMaxSubtreeCount(funSymb, 1);
|
---|
| 85 | }
|
---|
| 86 | foreach (var funSymb in binaryFunctionSymbols) {
|
---|
| 87 | SetMinSubtreeCount(funSymb, 2);
|
---|
| 88 | SetMaxSubtreeCount(funSymb, 2);
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | SetMinSubtreeCount(@if, 3);
|
---|
| 92 | SetMaxSubtreeCount(@if, 3);
|
---|
| 93 | SetMinSubtreeCount(constant, 0);
|
---|
| 94 | SetMaxSubtreeCount(constant, 0);
|
---|
| 95 | SetMinSubtreeCount(variableSymbol, 0);
|
---|
| 96 | SetMaxSubtreeCount(variableSymbol, 0);
|
---|
| 97 |
|
---|
| 98 | SetMinSubtreeCount(StartSymbol, Dimension);
|
---|
| 99 | SetMaxSubtreeCount(StartSymbol, Dimension);
|
---|
| 100 |
|
---|
| 101 | SetMinSubtreeCount(constant, 0);
|
---|
| 102 | SetMaxSubtreeCount(constant, 0);
|
---|
| 103 | SetMinSubtreeCount(variableSymbol, 0);
|
---|
| 104 | SetMaxSubtreeCount(variableSymbol, 0);
|
---|
| 105 |
|
---|
| 106 | // allow all symbols as children of the start-symbol
|
---|
| 107 | foreach (Symbol symb in allSymbols) {
|
---|
| 108 | for (int i = 0; i < GetMaxSubtreeCount(StartSymbol); i++)
|
---|
| 109 | SetAllowedChild(StartSymbol, symb, i);
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | // allow all symbols as children of all symbols
|
---|
| 113 | foreach (var parent in allSymbols) {
|
---|
| 114 | for (int i = 0; i < GetMaxSubtreeCount(parent); i++)
|
---|
| 115 | foreach (var child in allSymbols) {
|
---|
| 116 | SetAllowedChild(parent, child, i);
|
---|
| 117 | }
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 | }
|
---|