1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic.Interfaces;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
32 | using HeuristicLab.Common;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic.Evaluators {
|
---|
35 | [Item("SymbolicVectorRegressionScaledMseEvaluator", "Represents an operator that calculates the scaled mean squared error for all components independently.")]
|
---|
36 | [StorableClass]
|
---|
37 | public class SymbolicVectorRegressionScaledMseEvaluator : MultiObjectiveSymbolicVectorRegressionEvaluator {
|
---|
38 | private const string AlphaParameterName = "Alpha";
|
---|
39 | private const string BetaParameterName = "Beta";
|
---|
40 |
|
---|
41 | #region parameter properties
|
---|
42 | public ILookupParameter<DoubleArray> AlphaParameter {
|
---|
43 | get { return (ILookupParameter<DoubleArray>)Parameters[AlphaParameterName]; }
|
---|
44 | }
|
---|
45 | public ILookupParameter<DoubleArray> BetaParameter {
|
---|
46 | get { return (ILookupParameter<DoubleArray>)Parameters[BetaParameterName]; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | #endregion
|
---|
50 |
|
---|
51 | [StorableConstructor]
|
---|
52 | protected SymbolicVectorRegressionScaledMseEvaluator(bool deserializing) : base(deserializing) { }
|
---|
53 | protected SymbolicVectorRegressionScaledMseEvaluator(SymbolicVectorRegressionScaledMseEvaluator original, Cloner cloner)
|
---|
54 | : base(original, cloner) {
|
---|
55 | }
|
---|
56 | public SymbolicVectorRegressionScaledMseEvaluator()
|
---|
57 | : base() {
|
---|
58 | Parameters.Add(new LookupParameter<DoubleArray>(AlphaParameterName, "The alpha parameter for linear scaling."));
|
---|
59 | Parameters.Add(new LookupParameter<DoubleArray>(BetaParameterName, "The beta parameter for linear scaling."));
|
---|
60 | }
|
---|
61 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
62 | return new SymbolicVectorRegressionScaledMseEvaluator(this, cloner);
|
---|
63 | }
|
---|
64 | public override double[] Evaluate(SymbolicExpressionTree tree, ISymbolicExpressionTreeInterpreter interpreter, MultiVariateDataAnalysisProblemData problemData, IEnumerable<string> targetVariables, IEnumerable<int> rows, DoubleArray lowerEstimationBound, DoubleArray upperEstimationBound) {
|
---|
65 | List<string> targetVariablesList = targetVariables.ToList();
|
---|
66 | double[] qualities = new double[targetVariables.Count()];
|
---|
67 | DoubleArray alpha = new DoubleArray(qualities.Length);
|
---|
68 | DoubleArray beta = new DoubleArray(qualities.Length);
|
---|
69 | // use only the i-th vector component
|
---|
70 | List<SymbolicExpressionTreeNode> componentBranches = new List<SymbolicExpressionTreeNode>(tree.Root.SubTrees[0].SubTrees);
|
---|
71 | while (tree.Root.SubTrees[0].SubTrees.Count > 0) tree.Root.SubTrees[0].RemoveSubTree(0);
|
---|
72 |
|
---|
73 | for (int i = 0; i < targetVariables.Count(); i++) {
|
---|
74 | tree.Root.SubTrees[0].AddSubTree(componentBranches[i]);
|
---|
75 |
|
---|
76 | double compAlpha;
|
---|
77 | double compBeta;
|
---|
78 | double mse = SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(interpreter, tree,
|
---|
79 | lowerEstimationBound[i], upperEstimationBound[i],
|
---|
80 | problemData.Dataset, targetVariablesList[i], rows, out compBeta, out compAlpha);
|
---|
81 |
|
---|
82 | qualities[i] = mse;
|
---|
83 | alpha[i] = compAlpha;
|
---|
84 | beta[i] = compBeta;
|
---|
85 | tree.Root.SubTrees[0].RemoveSubTree(0);
|
---|
86 | }
|
---|
87 | // restore tree
|
---|
88 | foreach (var treeNode in componentBranches) {
|
---|
89 | tree.Root.SubTrees[0].AddSubTree(treeNode);
|
---|
90 | }
|
---|
91 |
|
---|
92 | AlphaParameter.ActualValue = alpha;
|
---|
93 | BetaParameter.ActualValue = beta;
|
---|
94 | return qualities;
|
---|
95 | }
|
---|
96 | }
|
---|
97 | }
|
---|