1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Regression;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic.Interfaces;
|
---|
34 | using HeuristicLab.Common;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic.Evaluators {
|
---|
37 | [StorableClass]
|
---|
38 | public abstract class MultiObjectiveSymbolicVectorRegressionEvaluator : SymbolicVectorRegressionEvaluator, IMultiObjectiveSymbolicVectorRegressionEvaluator {
|
---|
39 | private const string QualitiesParameterName = "Qualities";
|
---|
40 | #region parameter properties
|
---|
41 | public ILookupParameter<DoubleArray> QualitiesParameter {
|
---|
42 | get { return (ILookupParameter<DoubleArray>)Parameters[QualitiesParameterName]; }
|
---|
43 | }
|
---|
44 | #endregion
|
---|
45 | [StorableConstructor]
|
---|
46 | protected MultiObjectiveSymbolicVectorRegressionEvaluator(bool deserializing) : base(deserializing) { }
|
---|
47 | protected MultiObjectiveSymbolicVectorRegressionEvaluator(MultiObjectiveSymbolicVectorRegressionEvaluator original, Cloner cloner)
|
---|
48 | : base(original, cloner) {
|
---|
49 | }
|
---|
50 | public MultiObjectiveSymbolicVectorRegressionEvaluator()
|
---|
51 | : base() {
|
---|
52 | Parameters.Add(new LookupParameter<DoubleValue>(QualitiesParameterName, "The qualities of the symbolic vector regression solution."));
|
---|
53 | }
|
---|
54 |
|
---|
55 |
|
---|
56 | public override IOperation Apply() {
|
---|
57 | var interpreter = SymbolicExpressionTreeInterpreter;
|
---|
58 | var tree = SymbolicExpressionTree;
|
---|
59 | var problemData = MultiVariateDataAnalysisProblemData;
|
---|
60 |
|
---|
61 | IEnumerable<string> selectedTargetVariables =
|
---|
62 | problemData.TargetVariables.CheckedItems
|
---|
63 | .Select(x => x.Value.Value);
|
---|
64 |
|
---|
65 | // check if there is a vector component for each target variable
|
---|
66 | if (selectedTargetVariables.Count() != tree.Root.SubTrees[0].SubTrees.Count)
|
---|
67 | throw new ArgumentException("The dimension of the output-vector of the tree doesn't match the number of selected target variables.");
|
---|
68 | int start = SamplesStart.Value;
|
---|
69 | int end = SamplesEnd.Value;
|
---|
70 |
|
---|
71 | IEnumerable<int> rows = GenerateRowsToEvaluate(Random.Next(), RelativeNumberOfEvaluatedSamples.Value, start, end);
|
---|
72 |
|
---|
73 | QualitiesParameter.ActualValue = new DoubleArray(Evaluate(tree, interpreter, problemData, selectedTargetVariables, rows, LowerEstimationLimit, UpperEstimationLimit));
|
---|
74 |
|
---|
75 | return base.Apply();
|
---|
76 | }
|
---|
77 |
|
---|
78 | public abstract double[] Evaluate(SymbolicExpressionTree tree, ISymbolicExpressionTreeInterpreter interpreter, MultiVariateDataAnalysisProblemData problemData, IEnumerable<string> selectedTargetVariables, IEnumerable<int> rows, DoubleArray LowerEstimationLimit, DoubleArray UpperEstimationLimit);
|
---|
79 | }
|
---|
80 | }
|
---|