Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression/3.3/Symbolic/Evaluators/MultiObjectiveSymbolicVectorRegressionEvaluator.cs @ 5510

Last change on this file since 5510 was 5275, checked in by gkronber, 14 years ago

Merged changes from trunk to data analysis exploration branch and added fractional distance metric evaluator. #1142

File size: 3.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis.Regression;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic.Interfaces;
34using HeuristicLab.Common;
35
36namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic.Evaluators {
37  [StorableClass]
38  public abstract class MultiObjectiveSymbolicVectorRegressionEvaluator : SymbolicVectorRegressionEvaluator, IMultiObjectiveSymbolicVectorRegressionEvaluator {
39    private const string QualitiesParameterName = "Qualities";
40    #region parameter properties
41    public ILookupParameter<DoubleArray> QualitiesParameter {
42      get { return (ILookupParameter<DoubleArray>)Parameters[QualitiesParameterName]; }
43    }
44    #endregion
45    [StorableConstructor]
46    protected MultiObjectiveSymbolicVectorRegressionEvaluator(bool deserializing) : base(deserializing) { }
47    protected MultiObjectiveSymbolicVectorRegressionEvaluator(MultiObjectiveSymbolicVectorRegressionEvaluator original, Cloner cloner)
48      : base(original, cloner) {
49    }
50    public MultiObjectiveSymbolicVectorRegressionEvaluator()
51      : base() {
52      Parameters.Add(new LookupParameter<DoubleValue>(QualitiesParameterName, "The qualities of the symbolic vector regression solution."));
53    }
54
55
56    public override IOperation Apply() {
57      var interpreter = SymbolicExpressionTreeInterpreter;
58      var tree = SymbolicExpressionTree;
59      var problemData = MultiVariateDataAnalysisProblemData;
60
61      IEnumerable<string> selectedTargetVariables =
62        problemData.TargetVariables.CheckedItems
63        .Select(x => x.Value.Value);
64
65      // check if there is a vector component for each target variable
66      if (selectedTargetVariables.Count() != tree.Root.SubTrees[0].SubTrees.Count)
67        throw new ArgumentException("The dimension of the output-vector of the tree doesn't match the number of selected target variables.");
68      int start = SamplesStart.Value;
69      int end = SamplesEnd.Value;
70
71      IEnumerable<int> rows = GenerateRowsToEvaluate(Random.Next(), RelativeNumberOfEvaluatedSamples.Value, start, end);
72
73      QualitiesParameter.ActualValue = new DoubleArray(Evaluate(tree, interpreter, problemData, selectedTargetVariables, rows, LowerEstimationLimit, UpperEstimationLimit));
74
75      return base.Apply();
76    }
77
78    public abstract double[] Evaluate(SymbolicExpressionTree tree, ISymbolicExpressionTreeInterpreter interpreter, MultiVariateDataAnalysisProblemData problemData, IEnumerable<string> selectedTargetVariables, IEnumerable<int> rows, DoubleArray LowerEstimationLimit, DoubleArray UpperEstimationLimit);
79  }
80}
Note: See TracBrowser for help on using the repository browser.