1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 |
|
---|
23 | using HeuristicLab.Optimization;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression;
|
---|
31 | using System.Linq;
|
---|
32 | using System.Collections.Generic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
35 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
36 | namespace HeuristicLab.Problems.DataAnalysis.FeatureSelection {
|
---|
37 | public class LinearRegressionFeatureSelectionEvaluator : SingleSuccessorOperator, IFeatureSelectionEvaluator {
|
---|
38 | #region parameter properties
|
---|
39 | public ILookupParameter<DataAnalysisProblemData> DataAnalysisProblemDataParameter {
|
---|
40 | get { return (ILookupParameter<DataAnalysisProblemData>)Parameters["DataAnalysisProblemData"]; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | public ILookupParameter<BinaryVector> SolutionParameter {
|
---|
44 | get { return (ILookupParameter<BinaryVector>)Parameters["FeatureArray"]; }
|
---|
45 | }
|
---|
46 | public ILookupParameter<DoubleArray> QualitiesParameter {
|
---|
47 | get { return (ILookupParameter<DoubleArray>)Parameters["Qualities"]; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | #endregion
|
---|
51 | #region properties
|
---|
52 | public DataAnalysisProblemData DataAnalysisProblemData {
|
---|
53 | get { return DataAnalysisProblemDataParameter.ActualValue; }
|
---|
54 | }
|
---|
55 | public BinaryVector FeatureArray {
|
---|
56 | get { return SolutionParameter.ActualValue; }
|
---|
57 | }
|
---|
58 | #endregion
|
---|
59 | [StorableConstructor]
|
---|
60 | protected LinearRegressionFeatureSelectionEvaluator(bool deserializing) : base(deserializing) { }
|
---|
61 | protected LinearRegressionFeatureSelectionEvaluator(LinearRegressionFeatureSelectionEvaluator original, Cloner cloner)
|
---|
62 | : base(original, cloner) {
|
---|
63 | }
|
---|
64 | public LinearRegressionFeatureSelectionEvaluator()
|
---|
65 | : base() {
|
---|
66 | Parameters.Add(new LookupParameter<DataAnalysisProblemData>("DataAnalysisProblemData", "The data for the data analysis problem."));
|
---|
67 | Parameters.Add(new LookupParameter<BinaryVector>("FeatureArray", "The binary array of features to use for linear regression."));
|
---|
68 | Parameters.Add(new LookupParameter<DoubleArray>("Qualities", "The qualities of the linear regression solution (MSE, size)."));
|
---|
69 | }
|
---|
70 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
71 | return new LinearRegressionFeatureSelectionEvaluator(this, cloner);
|
---|
72 | }
|
---|
73 | public override IOperation Apply() {
|
---|
74 | var dataset = DataAnalysisProblemData.Dataset;
|
---|
75 | string targetVariable = DataAnalysisProblemData.TargetVariable.Value;
|
---|
76 |
|
---|
77 | int start = DataAnalysisProblemData.TrainingSamplesStart.Value;
|
---|
78 | int end = DataAnalysisProblemData.TrainingSamplesEnd.Value;
|
---|
79 | List<string> allowedInputVariables = new List<string>();
|
---|
80 | int c = 0;
|
---|
81 | foreach (var indexedItem in DataAnalysisProblemData.InputVariables.CheckedItems) {
|
---|
82 | if (FeatureArray[c]) {
|
---|
83 | allowedInputVariables.Add(indexedItem.Value.Value);
|
---|
84 | }
|
---|
85 | c++;
|
---|
86 | }
|
---|
87 | int featureCount;
|
---|
88 | double mse;
|
---|
89 | if (allowedInputVariables.Count > 0) {
|
---|
90 | double rmsError, cvRmsError;
|
---|
91 | var tree = LinearRegressionSolutionCreator.CreateSymbolicExpressionTree(dataset, targetVariable, allowedInputVariables, start, end, out rmsError, out cvRmsError);
|
---|
92 | featureCount = allowedInputVariables.Count;
|
---|
93 | mse = cvRmsError * cvRmsError;
|
---|
94 | } else {
|
---|
95 | featureCount = 0;
|
---|
96 | // when zero features are selected the linear regression should produce a constant (the mean)
|
---|
97 | // the mse is then the variance of the target variable values
|
---|
98 | mse = dataset.GetEnumeratedVariableValues(targetVariable, start, end).Variance();
|
---|
99 | }
|
---|
100 | DoubleArray qualities = new DoubleArray(2);
|
---|
101 | qualities[0] = featureCount;
|
---|
102 | qualities[1] = mse;
|
---|
103 |
|
---|
104 | QualitiesParameter.ActualValue = qualities;
|
---|
105 | return base.Apply();
|
---|
106 | }
|
---|
107 | }
|
---|
108 | }
|
---|