[4082] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 |
|
---|
| 23 | using HeuristicLab.Optimization;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
| 27 | using HeuristicLab.Operators;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression;
|
---|
| 31 | using System.Linq;
|
---|
| 32 | using System.Collections.Generic;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
| 34 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
[5275] | 35 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[4082] | 36 | namespace HeuristicLab.Problems.DataAnalysis.FeatureSelection {
|
---|
| 37 | public class LinearRegressionFeatureSelectionEvaluator : SingleSuccessorOperator, IFeatureSelectionEvaluator {
|
---|
| 38 | #region parameter properties
|
---|
| 39 | public ILookupParameter<DataAnalysisProblemData> DataAnalysisProblemDataParameter {
|
---|
| 40 | get { return (ILookupParameter<DataAnalysisProblemData>)Parameters["DataAnalysisProblemData"]; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public ILookupParameter<BinaryVector> SolutionParameter {
|
---|
| 44 | get { return (ILookupParameter<BinaryVector>)Parameters["FeatureArray"]; }
|
---|
| 45 | }
|
---|
| 46 | public ILookupParameter<DoubleArray> QualitiesParameter {
|
---|
| 47 | get { return (ILookupParameter<DoubleArray>)Parameters["Qualities"]; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | #endregion
|
---|
| 51 | #region properties
|
---|
| 52 | public DataAnalysisProblemData DataAnalysisProblemData {
|
---|
| 53 | get { return DataAnalysisProblemDataParameter.ActualValue; }
|
---|
| 54 | }
|
---|
| 55 | public BinaryVector FeatureArray {
|
---|
| 56 | get { return SolutionParameter.ActualValue; }
|
---|
| 57 | }
|
---|
| 58 | #endregion
|
---|
[5275] | 59 | [StorableConstructor]
|
---|
| 60 | protected LinearRegressionFeatureSelectionEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 61 | protected LinearRegressionFeatureSelectionEvaluator(LinearRegressionFeatureSelectionEvaluator original, Cloner cloner)
|
---|
| 62 | : base(original, cloner) {
|
---|
| 63 | }
|
---|
[4082] | 64 | public LinearRegressionFeatureSelectionEvaluator()
|
---|
| 65 | : base() {
|
---|
| 66 | Parameters.Add(new LookupParameter<DataAnalysisProblemData>("DataAnalysisProblemData", "The data for the data analysis problem."));
|
---|
| 67 | Parameters.Add(new LookupParameter<BinaryVector>("FeatureArray", "The binary array of features to use for linear regression."));
|
---|
| 68 | Parameters.Add(new LookupParameter<DoubleArray>("Qualities", "The qualities of the linear regression solution (MSE, size)."));
|
---|
| 69 | }
|
---|
[5275] | 70 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 71 | return new LinearRegressionFeatureSelectionEvaluator(this, cloner);
|
---|
| 72 | }
|
---|
[4082] | 73 | public override IOperation Apply() {
|
---|
| 74 | var dataset = DataAnalysisProblemData.Dataset;
|
---|
| 75 | string targetVariable = DataAnalysisProblemData.TargetVariable.Value;
|
---|
| 76 |
|
---|
| 77 | int start = DataAnalysisProblemData.TrainingSamplesStart.Value;
|
---|
| 78 | int end = DataAnalysisProblemData.TrainingSamplesEnd.Value;
|
---|
| 79 | List<string> allowedInputVariables = new List<string>();
|
---|
| 80 | int c = 0;
|
---|
| 81 | foreach (var indexedItem in DataAnalysisProblemData.InputVariables.CheckedItems) {
|
---|
| 82 | if (FeatureArray[c]) {
|
---|
| 83 | allowedInputVariables.Add(indexedItem.Value.Value);
|
---|
| 84 | }
|
---|
| 85 | c++;
|
---|
| 86 | }
|
---|
| 87 | int featureCount;
|
---|
| 88 | double mse;
|
---|
| 89 | if (allowedInputVariables.Count > 0) {
|
---|
| 90 | double rmsError, cvRmsError;
|
---|
| 91 | var tree = LinearRegressionSolutionCreator.CreateSymbolicExpressionTree(dataset, targetVariable, allowedInputVariables, start, end, out rmsError, out cvRmsError);
|
---|
| 92 | featureCount = allowedInputVariables.Count;
|
---|
[4109] | 93 | mse = cvRmsError * cvRmsError;
|
---|
[4082] | 94 | } else {
|
---|
| 95 | featureCount = 0;
|
---|
| 96 | // when zero features are selected the linear regression should produce a constant (the mean)
|
---|
| 97 | // the mse is then the variance of the target variable values
|
---|
| 98 | mse = dataset.GetEnumeratedVariableValues(targetVariable, start, end).Variance();
|
---|
| 99 | }
|
---|
| 100 | DoubleArray qualities = new DoubleArray(2);
|
---|
| 101 | qualities[0] = featureCount;
|
---|
| 102 | qualities[1] = mse;
|
---|
| 103 |
|
---|
| 104 | QualitiesParameter.ActualValue = qualities;
|
---|
| 105 | return base.Apply();
|
---|
| 106 | }
|
---|
| 107 | }
|
---|
| 108 | }
|
---|