[4951] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
| 25 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 26 | namespace HeuristicLab.Problems.DataAnalysis.Tests {
|
---|
| 27 |
|
---|
| 28 | [TestClass()]
|
---|
| 29 | public class LinearScalingTest {
|
---|
| 30 | [TestMethod]
|
---|
| 31 | public void CalculateScalingParametersTest() {
|
---|
| 32 | var testData = new double[,] {
|
---|
| 33 | {5,1,1,1,2,1,3,1,1,2},
|
---|
| 34 | {5,4,4,5,7,10,3,2,1,2},
|
---|
| 35 | {3,1,1,1,2,2,3,1,1,2},
|
---|
| 36 | {6,8,8,1,3,4,3,7,1,2},
|
---|
| 37 | {4,1,1,3,2,1,3,1,1,2},
|
---|
| 38 | {8,10,10,8,7,10,9,7,1,4},
|
---|
| 39 | {1,1,1,1,2,10,3,1,1,2},
|
---|
| 40 | {2,1,2,1,2,1,3,1,1,2},
|
---|
| 41 | {2,1,1,1,2,1,1,1,5,2},
|
---|
| 42 | {4,2,1,1,2,1,2,1,1,2},
|
---|
| 43 | {1,1,1,1,1,1,3,1,1,2},
|
---|
| 44 | {2,1,1,1,2,1,2,1,1,2},
|
---|
| 45 | {5,3,3,3,2,3,4,4,1,4},
|
---|
| 46 | {8,7,5,10,7,9,5,5,4,4},
|
---|
| 47 | {7,4,6,4,6,1,4,3,1,4},
|
---|
| 48 | {4,1,1,1,2,1,2,1,1,2},
|
---|
| 49 | {4,1,1,1,2,1,3,1,1,2},
|
---|
| 50 | {10,7,7,6,4,10,4,1,2,4},
|
---|
| 51 | {6,1,1,1,2,1,3,1,1,2},
|
---|
| 52 | {7,3,2,10,5,10,5,4,4,4},
|
---|
| 53 | {10,5,5,3,6,7,7,10,1,4}
|
---|
| 54 | };
|
---|
| 55 |
|
---|
| 56 | double alpha, beta;
|
---|
| 57 | int n = testData.GetLength(0);
|
---|
| 58 | {
|
---|
| 59 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
| 60 | select testData[rows, 0];
|
---|
| 61 | IEnumerable<double> y = from rows in Enumerable.Range(0, n)
|
---|
| 62 | select testData[rows, 1];
|
---|
| 63 | SymbolicRegressionScaledMeanSquaredErrorEvaluator.CalculateScalingParameters(x, y, out beta, out alpha);
|
---|
| 64 |
|
---|
| 65 | Assert.AreEqual(alpha, 2.757281, 1.0E-6);
|
---|
| 66 | Assert.AreEqual(beta, 0.720267, 1.0E-6);
|
---|
| 67 |
|
---|
| 68 | IEnumerable<double> scaledY = from value in y select value * beta + alpha;
|
---|
| 69 | Assert.AreEqual(x.Average(), scaledY.Average(), 1.0E-6);
|
---|
| 70 | }
|
---|
| 71 | {
|
---|
| 72 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
| 73 | select testData[rows, 2] * 1.0E3;
|
---|
| 74 | IEnumerable<double> y = from rows in Enumerable.Range(0, n)
|
---|
| 75 | select testData[rows, 8] * 1.0E-3;
|
---|
| 76 | SymbolicRegressionScaledMeanSquaredErrorEvaluator.CalculateScalingParameters(x, y, out beta, out alpha);
|
---|
| 77 |
|
---|
| 78 | IEnumerable<double> scaledY = from value in y select value * beta + alpha;
|
---|
| 79 | Assert.AreEqual(x.Average(), scaledY.Average(), 1.0E-6);
|
---|
| 80 | }
|
---|
| 81 | }
|
---|
| 82 | }
|
---|
| 83 | }
|
---|