[4877] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 29 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
| 32 | [StorableClass]
|
---|
| 33 | [Item("SymbolicRegressionModel", "A symbolic regression model represents an entity that provides estimated values based on input values.")]
|
---|
| 34 | public sealed class SymbolicRegressionModel : NamedItem, IDataAnalysisModel {
|
---|
| 35 | [StorableConstructor]
|
---|
| 36 | private SymbolicRegressionModel(bool deserializing) : base(deserializing) { }
|
---|
| 37 | private SymbolicRegressionModel(SymbolicRegressionModel original, Cloner cloner)
|
---|
| 38 | : base(original, cloner) {
|
---|
| 39 | tree = (SymbolicExpressionTree)cloner.Clone(original.tree);
|
---|
| 40 | interpreter = (ISymbolicExpressionTreeInterpreter)cloner.Clone(original.interpreter);
|
---|
| 41 | inputVariables = new List<string>(original.inputVariables);
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public SymbolicRegressionModel(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree tree)
|
---|
| 45 | : base() {
|
---|
| 46 | this.tree = tree;
|
---|
| 47 | this.interpreter = interpreter;
|
---|
| 48 | this.inputVariables = tree.IterateNodesPrefix().OfType<VariableTreeNode>().Select(var => var.VariableName).Distinct().ToList();
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 52 | return new SymbolicRegressionModel(this, cloner);
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 56 | private void AfterDeserialization() {
|
---|
| 57 | if (inputVariables == null)
|
---|
| 58 | this.inputVariables = tree.IterateNodesPrefix().OfType<VariableTreeNode>().Select(var => var.VariableName).Distinct().ToList();
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | [Storable]
|
---|
| 62 | private SymbolicExpressionTree tree;
|
---|
| 63 | public SymbolicExpressionTree SymbolicExpressionTree {
|
---|
| 64 | get { return tree; }
|
---|
| 65 | }
|
---|
| 66 | [Storable]
|
---|
| 67 | private ISymbolicExpressionTreeInterpreter interpreter;
|
---|
| 68 | public ISymbolicExpressionTreeInterpreter Interpreter {
|
---|
| 69 | get { return interpreter; }
|
---|
| 70 | }
|
---|
| 71 | [Storable]
|
---|
| 72 | private List<string> inputVariables;
|
---|
| 73 | public IEnumerable<string> InputVariables {
|
---|
| 74 | get { return inputVariables.AsEnumerable(); }
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | public IEnumerable<double> GetEstimatedValues(DataAnalysisProblemData problemData, int start, int end) {
|
---|
| 78 | return GetEstimatedValues(problemData, Enumerable.Range(start, end - start));
|
---|
| 79 | }
|
---|
| 80 | public IEnumerable<double> GetEstimatedValues(DataAnalysisProblemData problemData, IEnumerable<int> rows) {
|
---|
| 81 | return interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, rows);
|
---|
| 82 | }
|
---|
| 83 | }
|
---|
| 84 | }
|
---|