1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Analysis;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Optimization.Operators;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
34 | using System.Collections.Generic;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
38 | /// <summary>
|
---|
39 | /// An operator that analyzes the population diversity with respect to the sets of used variables.
|
---|
40 | /// </summary>
|
---|
41 | [Item("VariablesUsagePopulationDiversityAnalysisOperator", "An operator that analyzes the population diversity with respect to the sets of used variables.")]
|
---|
42 | [StorableClass]
|
---|
43 | public sealed class VariablesUsagePopulationDiversityAnalyzer : SymbolicRegressionPopulationDiversityAnalyzer {
|
---|
44 |
|
---|
45 | [StorableConstructor]
|
---|
46 | private VariablesUsagePopulationDiversityAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
47 | private VariablesUsagePopulationDiversityAnalyzer(VariablesUsagePopulationDiversityAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
48 | public VariablesUsagePopulationDiversityAnalyzer() : base() { }
|
---|
49 |
|
---|
50 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
51 | return new VariablesUsagePopulationDiversityAnalyzer(this, cloner);
|
---|
52 | }
|
---|
53 |
|
---|
54 | protected override double[,] CalculateSimilarities(SymbolicExpressionTree[] solutions) {
|
---|
55 | int n = solutions.Length;
|
---|
56 | List<string> variableNames = new List<string>() ;
|
---|
57 | foreach (StringValue inputVariable in ProblemData.InputVariables)
|
---|
58 | variableNames.Add(inputVariable.Value);
|
---|
59 | List<int>[] usedVariables = new List<int>[n];
|
---|
60 | for (int i = 0; i < n; i++) {
|
---|
61 | usedVariables[i] = collectUsedVariables(solutions[i], variableNames);
|
---|
62 | }
|
---|
63 | double[,] result = new double[n, n];
|
---|
64 | for (int i = 0; i < n; i++) {
|
---|
65 | for (int j = 0; j < n; j++) {
|
---|
66 | if (i == j)
|
---|
67 | result[i, j] = 1;
|
---|
68 | else
|
---|
69 | result[i, j] = overlapRatio(usedVariables[i], usedVariables[j]);
|
---|
70 | }
|
---|
71 | }
|
---|
72 | return result;
|
---|
73 | }
|
---|
74 |
|
---|
75 | private List<int> collectUsedVariables(SymbolicExpressionTree tree, List<string> variableNames) {
|
---|
76 | List<int> variables = new List<int>();
|
---|
77 | collectUsedVariables(tree.Root, variables, variableNames);
|
---|
78 | return variables;
|
---|
79 | }
|
---|
80 |
|
---|
81 | private void collectUsedVariables(SymbolicExpressionTreeNode node, List<int> variables, List<string> variableNames) {
|
---|
82 | if (node is VariableTreeNode) {
|
---|
83 | string varName = (node as VariableTreeNode).VariableName;
|
---|
84 | int varIndex = variableNames.IndexOf(varName);
|
---|
85 | if (!variables.Contains(varIndex))
|
---|
86 | variables.Add(varIndex);
|
---|
87 | }
|
---|
88 | foreach (SymbolicExpressionTreeNode subnode in node.SubTrees)
|
---|
89 | collectUsedVariables(subnode, variables, variableNames);
|
---|
90 | }
|
---|
91 |
|
---|
92 | private double overlapRatio(List<int> list1, List<int> list2) {
|
---|
93 | if (list1.Count == 0)
|
---|
94 | return 0;
|
---|
95 | int found = 0;
|
---|
96 | foreach (int i in list1)
|
---|
97 | if (list2.Contains(i))
|
---|
98 | found++;
|
---|
99 | return ((double)found) / list1.Count;
|
---|
100 | }
|
---|
101 |
|
---|
102 | }
|
---|
103 | }
|
---|