Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis.PopulationDiversityAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/SymbolicRegressionSolutionLinearScaler.cs @ 5024

Last change on this file since 5024 was 4877, checked in by swinkler, 14 years ago

Created branch for population diversity analysis for symbolic regression. (#1278)

File size: 5.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
26using HeuristicLab.Operators;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
30
31namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
32  /// <summary>
33  /// An operator that creates a linearly transformed symbolic regression solution (given alpha and beta).
34  /// </summary>
35  [Item("SymbolicRegressionSolutionLinearScaler", "An operator that creates a linearly transformed symbolic regression solution (given alpha and beta).")]
36  [StorableClass]
37  public sealed class SymbolicRegressionSolutionLinearScaler : SingleSuccessorOperator {
38    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
39    private const string ScaledSymbolicExpressionTreeParameterName = "ScaledSymbolicExpressionTree";
40    private const string AlphaParameterName = "Alpha";
41    private const string BetaParameterName = "Beta";
42
43    public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
44      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
45    }
46    public ILookupParameter<SymbolicExpressionTree> ScaledSymbolicExpressionTreeParameter {
47      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[ScaledSymbolicExpressionTreeParameterName]; }
48    }
49    public ILookupParameter<DoubleValue> AlphaParameter {
50      get { return (ILookupParameter<DoubleValue>)Parameters[AlphaParameterName]; }
51    }
52    public ILookupParameter<DoubleValue> BetaParameter {
53      get { return (ILookupParameter<DoubleValue>)Parameters[BetaParameterName]; }
54    }
55
56    [StorableConstructor]
57    private SymbolicRegressionSolutionLinearScaler(bool deserializing) : base(deserializing) { }
58    private SymbolicRegressionSolutionLinearScaler(SymbolicRegressionSolutionLinearScaler original, Cloner cloner) : base(original, cloner) { }
59    public SymbolicRegressionSolutionLinearScaler()
60      : base() {
61      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to transform."));
62      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(ScaledSymbolicExpressionTreeParameterName, "The resulting symbolic expression trees after transformation."));
63      Parameters.Add(new LookupParameter<DoubleValue>(AlphaParameterName, "Alpha parameter for linear transformation."));
64      Parameters.Add(new LookupParameter<DoubleValue>(BetaParameterName, "Beta parameter for linear transformation."));
65    }
66
67    public override IDeepCloneable Clone(Cloner cloner) {
68      return new SymbolicRegressionSolutionLinearScaler(this, cloner);
69    }
70
71    public override IOperation Apply() {
72      SymbolicExpressionTree tree = SymbolicExpressionTreeParameter.ActualValue;
73      DoubleValue alpha = AlphaParameter.ActualValue;
74      DoubleValue beta = BetaParameter.ActualValue;
75      if (alpha != null && beta != null) {
76        ScaledSymbolicExpressionTreeParameter.ActualValue = Scale(tree, alpha.Value, beta.Value);
77      } else {
78        // alpha or beta parameter not available => do not scale tree
79        ScaledSymbolicExpressionTreeParameter.ActualValue = tree;
80      }
81
82      return base.Apply();
83    }
84
85    public static SymbolicExpressionTree Scale(SymbolicExpressionTree original, double alpha, double beta) {
86      var mainBranch = original.Root.SubTrees[0].SubTrees[0];
87      var scaledMainBranch = MakeSum(MakeProduct(beta, mainBranch), alpha);
88
89      // remove the main branch before cloning to prevent cloning of sub-trees
90      original.Root.SubTrees[0].RemoveSubTree(0);
91      var scaledTree = (SymbolicExpressionTree)original.Clone();
92      // insert main branch into the original tree again
93      original.Root.SubTrees[0].InsertSubTree(0, mainBranch);
94      // insert the scaled main branch into the cloned tree
95      scaledTree.Root.SubTrees[0].InsertSubTree(0, scaledMainBranch);
96      return scaledTree;
97    }
98
99    private static SymbolicExpressionTreeNode MakeSum(SymbolicExpressionTreeNode treeNode, double alpha) {
100      var node = (new Addition()).CreateTreeNode();
101      var alphaConst = MakeConstant(alpha);
102      node.AddSubTree(treeNode);
103      node.AddSubTree(alphaConst);
104      return node;
105    }
106
107    private static SymbolicExpressionTreeNode MakeProduct(double beta, SymbolicExpressionTreeNode treeNode) {
108      var node = (new Multiplication()).CreateTreeNode();
109      var betaConst = MakeConstant(beta);
110      node.AddSubTree(treeNode);
111      node.AddSubTree(betaConst);
112      return node;
113    }
114
115    private static SymbolicExpressionTreeNode MakeConstant(double c) {
116      var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
117      node.Value = c;
118      return node;
119    }
120  }
121}
Note: See TracBrowser for help on using the repository browser.