1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Analysis;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Optimization.Operators;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
34 | using System.Collections.Generic;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
36 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
37 |
|
---|
38 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
39 | /// <summary>
|
---|
40 | /// An operator that analyzes the population diversity using fine grained structural tree similarity estimation.
|
---|
41 | /// </summary>
|
---|
42 | [Item("FineGrainedStructuralPopulationDiversityAnalyzer", "An operator that analyzes the population diversity using fine grained structural tree similarity estimation.")]
|
---|
43 | [StorableClass]
|
---|
44 | public sealed class FineGrainedStructuralPopulationDiversityAnalyzer : SymbolicRegressionPopulationDiversityAnalyzer {
|
---|
45 |
|
---|
46 | #region Properties and Parameters
|
---|
47 |
|
---|
48 | private const string FunctionTreeGrammarParameterName = "FunctionTreeGrammar";
|
---|
49 | private const string MinimumLevelDeltaParameterName = "MinimumLevelDelta";
|
---|
50 | private const string MaximumLevelDeltaParameterName = "MaximumLevelDelta";
|
---|
51 | private const string PreventMultipleComparisonContributionParameterName = "PreventMultipleComparisonContribution";
|
---|
52 | private const string MaximumExpressionDepthParameterName = "MaxExpressionDepth";
|
---|
53 | private const string LevelDifferenceCoefficientParameterName = "LevelDifferenceCoefficient";
|
---|
54 | private const string AncestorIndexCoefficientParameterName = "AncestorIndexCoefficient";
|
---|
55 | private const string ConstantValueCoefficientParameterName = "ConstantValueCoefficient";
|
---|
56 | private const string VariableWeightCoefficientParameterName = "VariableWeightCoefficient";
|
---|
57 | private const string TimeOffsetCoefficientParameterName = "TimeOffsetCoefficient";
|
---|
58 | private const string VariableIndexCoefficientParameterName = "VariableIndexCoefficient";
|
---|
59 | private const string AdditiveSimilarityCalculationParameterName = "AdditiveSimilarityCalculation";
|
---|
60 |
|
---|
61 | public IValueLookupParameter<GlobalSymbolicExpressionGrammar> FunctionTreeGrammarParameter {
|
---|
62 | get { return (IValueLookupParameter<GlobalSymbolicExpressionGrammar>)Parameters[FunctionTreeGrammarParameterName]; }
|
---|
63 | }
|
---|
64 | public GlobalSymbolicExpressionGrammar FunctionTreeGrammar {
|
---|
65 | get { return FunctionTreeGrammarParameter.ActualValue; }
|
---|
66 | }
|
---|
67 | public IValueLookupParameter<IntValue> MaximumExpressionDepthParameter {
|
---|
68 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumExpressionDepthParameterName]; }
|
---|
69 | }
|
---|
70 | public int MaximumExpressionDepth {
|
---|
71 | get { return MaximumExpressionDepthParameter.ActualValue.Value; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | public IValueParameter<IntValue> MinimumLevelDeltaParameter {
|
---|
75 | get { return (IValueParameter<IntValue>)Parameters[MinimumLevelDeltaParameterName]; }
|
---|
76 | }
|
---|
77 | public int MinimumLevelDelta {
|
---|
78 | get { return MinimumLevelDeltaParameter.Value.Value; }
|
---|
79 | }
|
---|
80 | public IValueParameter<IntValue> MaximumLevelDeltaParameter {
|
---|
81 | get { return (IValueParameter<IntValue>)Parameters[MaximumLevelDeltaParameterName]; }
|
---|
82 | }
|
---|
83 | public int MaximumLevelDelta {
|
---|
84 | get { return MaximumLevelDeltaParameter.Value.Value; }
|
---|
85 | }
|
---|
86 | public IValueParameter<BoolValue> PreventMultipleComparisonContributionParameter {
|
---|
87 | get { return (IValueParameter<BoolValue>)Parameters[PreventMultipleComparisonContributionParameterName]; }
|
---|
88 | }
|
---|
89 | public bool PreventMultipleComparisonContribution {
|
---|
90 | get { return PreventMultipleComparisonContributionParameter.Value.Value; }
|
---|
91 | }
|
---|
92 |
|
---|
93 | public IValueParameter<DoubleValue> LevelDifferenceCoefficientParameter {
|
---|
94 | get { return (IValueParameter<DoubleValue>)Parameters[LevelDifferenceCoefficientParameterName]; }
|
---|
95 | }
|
---|
96 | public double LevelDifferenceCoefficient {
|
---|
97 | get { return LevelDifferenceCoefficientParameter.Value.Value; }
|
---|
98 | }
|
---|
99 | public IValueParameter<DoubleValue> AncestorIndexCoefficientParameter {
|
---|
100 | get { return (IValueParameter<DoubleValue>)Parameters[AncestorIndexCoefficientParameterName]; }
|
---|
101 | }
|
---|
102 | public double AncestorIndexCoefficient {
|
---|
103 | get { return AncestorIndexCoefficientParameter.Value.Value; }
|
---|
104 | }
|
---|
105 | public IValueParameter<DoubleValue> ConstantValueCoefficientParameter {
|
---|
106 | get { return (IValueParameter<DoubleValue>)Parameters[ConstantValueCoefficientParameterName]; }
|
---|
107 | }
|
---|
108 | public double ConstantValueCoefficient {
|
---|
109 | get { return ConstantValueCoefficientParameter.Value.Value; }
|
---|
110 | }
|
---|
111 | public IValueParameter<DoubleValue> VariableWeightCoefficientParameter {
|
---|
112 | get { return (IValueParameter<DoubleValue>)Parameters[VariableWeightCoefficientParameterName]; }
|
---|
113 | }
|
---|
114 | public double VariableWeightCoefficient {
|
---|
115 | get { return VariableWeightCoefficientParameter.Value.Value; }
|
---|
116 | }
|
---|
117 | public IValueParameter<DoubleValue> TimeOffsetCoefficientParameter {
|
---|
118 | get { return (IValueParameter<DoubleValue>)Parameters[TimeOffsetCoefficientParameterName]; }
|
---|
119 | }
|
---|
120 | public double TimeOffsetCoefficientCoefficient {
|
---|
121 | get { return TimeOffsetCoefficientParameter.Value.Value; }
|
---|
122 | }
|
---|
123 | public IValueParameter<DoubleValue> VariableIndexCoefficientParameter {
|
---|
124 | get { return (IValueParameter<DoubleValue>)Parameters[VariableIndexCoefficientParameterName]; }
|
---|
125 | }
|
---|
126 | public double VariableIndexCoefficient {
|
---|
127 | get { return VariableIndexCoefficientParameter.Value.Value; }
|
---|
128 | }
|
---|
129 | public IValueParameter<BoolValue> AdditiveSimilarityCalculationParameter {
|
---|
130 | get { return (IValueParameter<BoolValue>)Parameters[AdditiveSimilarityCalculationParameterName]; }
|
---|
131 | }
|
---|
132 | public bool AdditiveSimilarityCalculation {
|
---|
133 | get { return AdditiveSimilarityCalculationParameter.Value.Value; }
|
---|
134 | }
|
---|
135 |
|
---|
136 | #endregion
|
---|
137 |
|
---|
138 | [StorableConstructor]
|
---|
139 | private FineGrainedStructuralPopulationDiversityAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
140 | private FineGrainedStructuralPopulationDiversityAnalyzer(FineGrainedStructuralPopulationDiversityAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
141 | public FineGrainedStructuralPopulationDiversityAnalyzer() : base() {
|
---|
142 | Parameters.Add(new ValueLookupParameter<GlobalSymbolicExpressionGrammar>(FunctionTreeGrammarParameterName, "The grammar that is used for symbolic regression models."));
|
---|
143 | Parameters.Add(new ValueLookupParameter<IntValue>(MaximumExpressionDepthParameterName, "Maximal depth of the analyzed symbolic expressions."));
|
---|
144 | Parameters.Add(new ValueParameter<IntValue>(MinimumLevelDeltaParameterName, "Minimum value for the level delta of the analyzed genetic information items.", new IntValue(0)));
|
---|
145 | Parameters.Add(new ValueParameter<IntValue>(MaximumLevelDeltaParameterName, "Maximum value for the level delta of the analyzed genetic information items.", new IntValue(int.MaxValue)));
|
---|
146 | Parameters.Add(new ValueParameter<BoolValue>(PreventMultipleComparisonContributionParameterName, "Flag that denotes whether genetic information items are hindered from contributing to the similarity function multiple times.", new BoolValue(false)));
|
---|
147 | Parameters.Add(new ValueParameter<DoubleValue>(LevelDifferenceCoefficientParameterName, "Weighting coefficient for level differences.", new DoubleValue(0.2)));
|
---|
148 | Parameters.Add(new ValueParameter<DoubleValue>(AncestorIndexCoefficientParameterName, "Weighting coefficient for ancestor index differences.", new DoubleValue(0.2)));
|
---|
149 | Parameters.Add(new ValueParameter<DoubleValue>(ConstantValueCoefficientParameterName, "Weighting coefficient for constant value differences.", new DoubleValue(0.2)));
|
---|
150 | Parameters.Add(new ValueParameter<DoubleValue>(VariableWeightCoefficientParameterName, "Weighting coefficient for variable weight differences.", new DoubleValue(0.2)));
|
---|
151 | Parameters.Add(new ValueParameter<DoubleValue>(TimeOffsetCoefficientParameterName, "Weighting coefficient for time lag differences.", new DoubleValue(0.2)));
|
---|
152 | Parameters.Add(new ValueParameter<DoubleValue>(VariableIndexCoefficientParameterName, "Weighting coefficient for variable index differences.", new DoubleValue(0.2)));
|
---|
153 | Parameters.Add(new ValueParameter<BoolValue>(AdditiveSimilarityCalculationParameterName, "Flag that denotes whether the similarity of genetic information items shall be calculated using additive calculation.", new BoolValue(true)));
|
---|
154 | }
|
---|
155 |
|
---|
156 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
157 | return new FineGrainedStructuralPopulationDiversityAnalyzer(this, cloner);
|
---|
158 | }
|
---|
159 |
|
---|
160 | protected override double[,] CalculateSimilarities(SymbolicExpressionTree[] solutions) {
|
---|
161 | // collect information stored int the problem's parameters
|
---|
162 | double variableWeightSigma = 0;
|
---|
163 | double constantMinimumValue = 0;
|
---|
164 | double constantMaximumValue = 0;
|
---|
165 | int minimumTimeOffset = 0;
|
---|
166 | int maximumTimeOffset = 0;
|
---|
167 | foreach (Symbol symbol in FunctionTreeGrammar.Symbols) {
|
---|
168 | Constant constant = symbol as Constant;
|
---|
169 | if (constant !=null) {
|
---|
170 | constantMinimumValue = constant.MinValue;
|
---|
171 | constantMaximumValue = constant.MaxValue;
|
---|
172 | }
|
---|
173 | DataAnalysis.Symbolic.Symbols.Variable variable = symbol as DataAnalysis.Symbolic.Symbols.Variable;
|
---|
174 | if (variable != null)
|
---|
175 | variableWeightSigma = variable.WeightSigma;
|
---|
176 | LaggedVariable laggedVariable = symbol as LaggedVariable;
|
---|
177 | if (laggedVariable !=null) {
|
---|
178 | minimumTimeOffset = laggedVariable.MinLag;
|
---|
179 | maximumTimeOffset = laggedVariable.MaxLag;
|
---|
180 | }
|
---|
181 | }
|
---|
182 | int n = solutions.Length;
|
---|
183 | List<string> variableNames = new List<string>();
|
---|
184 | foreach (StringValue variableName in ProblemData.InputVariables) {
|
---|
185 | variableNames.Add(variableName.Value);
|
---|
186 | }
|
---|
187 | variableNames.Add(ProblemData.TargetVariable.Value);
|
---|
188 | // collect genetic information item lists and store them also in dictionaries
|
---|
189 | IList<GeneticInformationItem>[] geneticInformationItemsLists = new List<GeneticInformationItem>[n];
|
---|
190 | IDictionary<string, IList<GeneticInformationItem>>[] geneticInformationItemsListsDictionaries = new IDictionary<string, IList<GeneticInformationItem>>[n];
|
---|
191 | for (int i = 0; i < n; i++) {
|
---|
192 | geneticInformationItemsLists[i] = GeneticInformationItem.GetGeneticInformationItems(solutions[i].Root, variableNames, MinimumLevelDelta, MaximumLevelDelta);
|
---|
193 | geneticInformationItemsListsDictionaries[i] = GeneticInformationItem.GetDictionary(geneticInformationItemsLists[i]);
|
---|
194 | }
|
---|
195 | // calculate solution similarities
|
---|
196 | double[,] similarities = new double[n, n];
|
---|
197 | for (int i = 0; i < n; i++) {
|
---|
198 | for (int j = 0; j < n; j++) {
|
---|
199 | if (i == j)
|
---|
200 | similarities[i, j] = 1;
|
---|
201 | else {
|
---|
202 | IList<GeneticInformationItem> solution1GeneticItems = geneticInformationItemsLists[i];
|
---|
203 | IDictionary<string, IList<GeneticInformationItem>> solution2GeneticItemsDictionary = GeneticInformationItem.CopyDictionary(geneticInformationItemsListsDictionaries[j]);
|
---|
204 | double similarity = 0;
|
---|
205 | for (int k = 0; k < solution1GeneticItems.Count; k++) {
|
---|
206 | double bestPendantSimilarity = 0;
|
---|
207 | GeneticInformationItem item = solution1GeneticItems[k];
|
---|
208 | GeneticInformationItem bestPendant = null;
|
---|
209 | IList<GeneticInformationItem> geneticInformationItemsList = null;
|
---|
210 | string key = GeneticInformationItem.GetKey(item);
|
---|
211 | if (solution2GeneticItemsDictionary.ContainsKey(key)) {
|
---|
212 | geneticInformationItemsList = solution2GeneticItemsDictionary[GeneticInformationItem.GetKey(item)];
|
---|
213 | bestPendant = GeneticInformationItem.FindBestPendant(item, geneticInformationItemsList,
|
---|
214 | constantMinimumValue, constantMaximumValue, variableWeightSigma,
|
---|
215 | MaximumExpressionDepth, minimumTimeOffset, maximumTimeOffset,
|
---|
216 | LevelDifferenceCoefficient, AncestorIndexCoefficient, ConstantValueCoefficient, VariableWeightCoefficient,
|
---|
217 | TimeOffsetCoefficientCoefficient, VariableIndexCoefficient, AdditiveSimilarityCalculation,
|
---|
218 | out bestPendantSimilarity);
|
---|
219 | }
|
---|
220 | if (bestPendant != null) {
|
---|
221 | similarity += bestPendantSimilarity;
|
---|
222 | if (PreventMultipleComparisonContribution)
|
---|
223 | geneticInformationItemsList.Remove(bestPendant);
|
---|
224 | }
|
---|
225 | }
|
---|
226 | similarities[i, j] = similarity / solution1GeneticItems.Count;
|
---|
227 | }
|
---|
228 | }
|
---|
229 | }
|
---|
230 | return similarities;
|
---|
231 | }
|
---|
232 |
|
---|
233 | }
|
---|
234 |
|
---|
235 | }
|
---|