[4877] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
| 30 | using HeuristicLab.Operators;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using HeuristicLab.Parameters;
|
---|
| 33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 34 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
| 35 |
|
---|
| 36 | namespace HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression {
|
---|
| 37 | /// <summary>
|
---|
| 38 | /// A base class for operators which evaluates OneMax solutions given in BinaryVector encoding.
|
---|
| 39 | /// </summary>
|
---|
| 40 | [Item("LinearRegressionSolutionCreator", "Uses linear regression to create a structure tree.")]
|
---|
| 41 | [StorableClass]
|
---|
| 42 | public sealed class LinearRegressionSolutionCreator : SingleSuccessorOperator, ISolutionCreator {
|
---|
| 43 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
| 44 | private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
|
---|
| 45 | private const string SamplesStartParameterName = "SamplesStart";
|
---|
| 46 | private const string SamplesEndParameterName = "SamplesEnd";
|
---|
| 47 |
|
---|
| 48 | [StorableConstructor]
|
---|
| 49 | private LinearRegressionSolutionCreator(bool deserializing) : base(deserializing) { }
|
---|
| 50 | private LinearRegressionSolutionCreator(LinearRegressionSolutionCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 51 | public LinearRegressionSolutionCreator() {
|
---|
| 52 | Parameters.Add(new LookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The resulting solution encoded as a symbolic expression tree."));
|
---|
| 53 | Parameters.Add(new LookupParameter<DataAnalysisProblemData>(DataAnalysisProblemDataParameterName, "The problem data on which the linear regression should be calculated."));
|
---|
| 54 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The start of the samples on which the linear regression should be applied."));
|
---|
| 55 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The end of the samples on which the linear regression should be applied."));
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 59 | return new LinearRegressionSolutionCreator(this, cloner);
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | #region parameter properties
|
---|
| 63 | public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
| 64 | get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
| 65 | }
|
---|
| 66 | public SymbolicExpressionTree SymbolicExpressionTree {
|
---|
| 67 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
| 68 | set { SymbolicExpressionTreeParameter.ActualValue = value; }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | public ILookupParameter<DataAnalysisProblemData> DataAnalysisProblemDataParameter {
|
---|
| 72 | get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[DataAnalysisProblemDataParameterName]; }
|
---|
| 73 | }
|
---|
| 74 | public DataAnalysisProblemData DataAnalysisProblemData {
|
---|
| 75 | get { return DataAnalysisProblemDataParameter.ActualValue; }
|
---|
| 76 | set { DataAnalysisProblemDataParameter.ActualValue = value; }
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | public IValueLookupParameter<IntValue> SamplesStartParameter {
|
---|
| 80 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
|
---|
| 81 | }
|
---|
| 82 | public IntValue SamplesStart {
|
---|
| 83 | get { return SamplesStartParameter.ActualValue; }
|
---|
| 84 | set { SamplesStartParameter.ActualValue = value; }
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | public IValueLookupParameter<IntValue> SamplesEndParameter {
|
---|
| 88 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
|
---|
| 89 | }
|
---|
| 90 | public IntValue SamplesEnd {
|
---|
| 91 | get { return SamplesEndParameter.ActualValue; }
|
---|
| 92 | set { SamplesEndParameter.ActualValue = value; }
|
---|
| 93 | }
|
---|
| 94 | #endregion
|
---|
| 95 |
|
---|
| 96 |
|
---|
| 97 | public override IOperation Apply() {
|
---|
| 98 | double rmsError, cvRmsError;
|
---|
| 99 | SymbolicExpressionTree = CreateSymbolicExpressionTree(DataAnalysisProblemData.Dataset, DataAnalysisProblemData.TargetVariable.Value, DataAnalysisProblemData.InputVariables.CheckedItems.Select(x => x.Value.Value), SamplesStart.Value, SamplesEnd.Value, out rmsError, out cvRmsError);
|
---|
| 100 | return base.Apply();
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | public static SymbolicExpressionTree CreateSymbolicExpressionTree(Dataset dataset, string targetVariable, IEnumerable<string> allowedInputVariables, int start, int end, out double rmsError, out double cvRmsError) {
|
---|
| 104 | double[,] inputMatrix = LinearRegressionUtil.PrepareInputMatrix(dataset, targetVariable, allowedInputVariables, start, end);
|
---|
| 105 |
|
---|
| 106 | alglib.linreg.linearmodel lm = new alglib.linreg.linearmodel();
|
---|
| 107 | alglib.linreg.lrreport ar = new alglib.linreg.lrreport();
|
---|
| 108 | int nRows = inputMatrix.GetLength(0);
|
---|
| 109 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
| 110 | double[] coefficients = new double[nFeatures + 1]; //last coefficient is for the constant
|
---|
| 111 |
|
---|
| 112 | int retVal = 1;
|
---|
| 113 | alglib.linreg.lrbuild(ref inputMatrix, nRows, nFeatures, ref retVal, ref lm, ref ar);
|
---|
| 114 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression model");
|
---|
| 115 | rmsError = ar.rmserror;
|
---|
| 116 | cvRmsError = ar.cvrmserror;
|
---|
| 117 |
|
---|
| 118 | for (int i = 0; i < nFeatures + 1; i++)
|
---|
| 119 | coefficients[i] = lm.w[i + 4];
|
---|
| 120 |
|
---|
| 121 | SymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
|
---|
| 122 | SymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
|
---|
| 123 | tree.Root.AddSubTree(startNode);
|
---|
| 124 | SymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
|
---|
| 125 | startNode.AddSubTree(addition);
|
---|
| 126 |
|
---|
| 127 | int col = 0;
|
---|
| 128 | foreach (string column in allowedInputVariables) {
|
---|
| 129 | VariableTreeNode vNode = (VariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable().CreateTreeNode();
|
---|
| 130 | vNode.VariableName = column;
|
---|
| 131 | vNode.Weight = coefficients[col];
|
---|
| 132 | addition.AddSubTree(vNode);
|
---|
| 133 | col++;
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
|
---|
| 137 | cNode.Value = coefficients[coefficients.Length - 1];
|
---|
| 138 | addition.AddSubTree(cNode);
|
---|
| 139 |
|
---|
| 140 | return tree;
|
---|
| 141 | }
|
---|
| 142 | }
|
---|
| 143 | }
|
---|