Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis.PopulationDiversityAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/LinearRegression/LinearRegressionSolutionCreator.cs @ 13806

Last change on this file since 13806 was 4877, checked in by swinkler, 14 years ago

Created branch for population diversity analysis for symbolic regression. (#1278)

File size: 7.0 KB
RevLine 
[4877]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
30using HeuristicLab.Operators;
31using HeuristicLab.Optimization;
32using HeuristicLab.Parameters;
33using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
34using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
35
36namespace HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression {
37  /// <summary>
38  /// A base class for operators which evaluates OneMax solutions given in BinaryVector encoding.
39  /// </summary>
40  [Item("LinearRegressionSolutionCreator", "Uses linear regression to create a structure tree.")]
41  [StorableClass]
42  public sealed class LinearRegressionSolutionCreator : SingleSuccessorOperator, ISolutionCreator {
43    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
44    private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
45    private const string SamplesStartParameterName = "SamplesStart";
46    private const string SamplesEndParameterName = "SamplesEnd";
47
48    [StorableConstructor]
49    private LinearRegressionSolutionCreator(bool deserializing) : base(deserializing) { }
50    private LinearRegressionSolutionCreator(LinearRegressionSolutionCreator original, Cloner cloner) : base(original, cloner) { }
51    public LinearRegressionSolutionCreator() {
52      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The resulting solution encoded as a symbolic expression tree."));
53      Parameters.Add(new LookupParameter<DataAnalysisProblemData>(DataAnalysisProblemDataParameterName, "The problem data on which the linear regression should be calculated."));
54      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The start of the samples on which the linear regression should be applied."));
55      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The end of the samples on which the linear regression should be applied."));
56    }
57
58    public override IDeepCloneable Clone(Cloner cloner) {
59      return new LinearRegressionSolutionCreator(this, cloner);
60    }
61
62    #region parameter properties
63    public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
64      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
65    }
66    public SymbolicExpressionTree SymbolicExpressionTree {
67      get { return SymbolicExpressionTreeParameter.ActualValue; }
68      set { SymbolicExpressionTreeParameter.ActualValue = value; }
69    }
70
71    public ILookupParameter<DataAnalysisProblemData> DataAnalysisProblemDataParameter {
72      get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[DataAnalysisProblemDataParameterName]; }
73    }
74    public DataAnalysisProblemData DataAnalysisProblemData {
75      get { return DataAnalysisProblemDataParameter.ActualValue; }
76      set { DataAnalysisProblemDataParameter.ActualValue = value; }
77    }
78
79    public IValueLookupParameter<IntValue> SamplesStartParameter {
80      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
81    }
82    public IntValue SamplesStart {
83      get { return SamplesStartParameter.ActualValue; }
84      set { SamplesStartParameter.ActualValue = value; }
85    }
86
87    public IValueLookupParameter<IntValue> SamplesEndParameter {
88      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
89    }
90    public IntValue SamplesEnd {
91      get { return SamplesEndParameter.ActualValue; }
92      set { SamplesEndParameter.ActualValue = value; }
93    }
94    #endregion
95
96
97    public override IOperation Apply() {
98      double rmsError, cvRmsError;
99      SymbolicExpressionTree = CreateSymbolicExpressionTree(DataAnalysisProblemData.Dataset, DataAnalysisProblemData.TargetVariable.Value, DataAnalysisProblemData.InputVariables.CheckedItems.Select(x => x.Value.Value), SamplesStart.Value, SamplesEnd.Value, out rmsError, out cvRmsError);
100      return base.Apply();
101    }
102
103    public static SymbolicExpressionTree CreateSymbolicExpressionTree(Dataset dataset, string targetVariable, IEnumerable<string> allowedInputVariables, int start, int end, out double rmsError, out double cvRmsError) {
104      double[,] inputMatrix = LinearRegressionUtil.PrepareInputMatrix(dataset, targetVariable, allowedInputVariables, start, end);
105
106      alglib.linreg.linearmodel lm = new alglib.linreg.linearmodel();
107      alglib.linreg.lrreport ar = new alglib.linreg.lrreport();
108      int nRows = inputMatrix.GetLength(0);
109      int nFeatures = inputMatrix.GetLength(1) - 1;
110      double[] coefficients = new double[nFeatures + 1]; //last coefficient is for the constant
111
112      int retVal = 1;
113      alglib.linreg.lrbuild(ref inputMatrix, nRows, nFeatures, ref retVal, ref lm, ref ar);
114      if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression model");
115      rmsError = ar.rmserror;
116      cvRmsError = ar.cvrmserror;
117
118      for (int i = 0; i < nFeatures + 1; i++)
119        coefficients[i] = lm.w[i + 4];
120
121      SymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
122      SymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
123      tree.Root.AddSubTree(startNode);
124      SymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
125      startNode.AddSubTree(addition);
126
127      int col = 0;
128      foreach (string column in allowedInputVariables) {
129        VariableTreeNode vNode = (VariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable().CreateTreeNode();
130        vNode.VariableName = column;
131        vNode.Weight = coefficients[col];
132        addition.AddSubTree(vNode);
133        col++;
134      }
135
136      ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
137      cNode.Value = coefficients[coefficients.Length - 1];
138      addition.AddSubTree(cNode);
139
140      return tree;
141    }
142  }
143}
Note: See TracBrowser for help on using the repository browser.