1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
32 | using HeuristicLab.Random;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Algorithms.DataAnalysis.Symbolic {
|
---|
35 | [StorableClass]
|
---|
36 | public sealed class RandomSamplesEvaluator : SingleSuccessorOperator, ISymbolicDataAnalysisIslandGeneticAlgorithmEvaluator {
|
---|
37 | private const string ProblemDataParameterName = "ProblemData";
|
---|
38 | private const string EvaluatorParameterName = "ProblemEvaluator";
|
---|
39 | private const string QualityParameterName = "Quality";
|
---|
40 | private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition";
|
---|
41 | private const string FixedSamplesPartitionParameterName = "FixedSamplesPartition";
|
---|
42 | private const string DataMigrationIntervalParameterName = "DataMigrationInterval";
|
---|
43 | private const string RandomSamplesParameterName = "RandomSamples";
|
---|
44 | private const string IslandIndexParameterName = "IslandIndex";
|
---|
45 | private const string IterationsParameterName = "Iterations";
|
---|
46 | private const string MaximumIterationsParameterName = "Maximum Iterations";
|
---|
47 |
|
---|
48 | #region parameter properties
|
---|
49 | public ILookupParameter<IDataAnalysisProblemData> ProblemDataParameter {
|
---|
50 | get { return (ILookupParameter<IDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
51 | }
|
---|
52 | public ILookupParameter<IOperator> EvaluatorParameter {
|
---|
53 | get { return (ILookupParameter<IOperator>)Parameters[EvaluatorParameterName]; }
|
---|
54 | }
|
---|
55 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
56 | get { return (ILookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
|
---|
57 | }
|
---|
58 | public ILookupParameter<IntRange> FitnessCalculationPartitionParameter {
|
---|
59 | get { return (ILookupParameter<IntRange>)Parameters[FitnessCalculationPartitionParameterName]; }
|
---|
60 | }
|
---|
61 | public ILookupParameter<IntRange> FixedSamplesPartitionParameter {
|
---|
62 | get { return (ILookupParameter<IntRange>)Parameters[FixedSamplesPartitionParameterName]; }
|
---|
63 | }
|
---|
64 | public IValueLookupParameter<IntValue> DataMigrationIntervalParameter {
|
---|
65 | get { return (IValueLookupParameter<IntValue>)Parameters[DataMigrationIntervalParameterName]; }
|
---|
66 | }
|
---|
67 | public IFixedValueParameter<PercentValue> RandomSamplesParameter {
|
---|
68 | get { return (IFixedValueParameter<PercentValue>)Parameters[RandomSamplesParameterName]; }
|
---|
69 | }
|
---|
70 | public ILookupParameter<IntValue> IslandIndexParameter {
|
---|
71 | get { return (ILookupParameter<IntValue>)Parameters[IslandIndexParameterName]; }
|
---|
72 | }
|
---|
73 | public ILookupParameter<IntValue> IterationsParameter {
|
---|
74 | get { return (ILookupParameter<IntValue>)Parameters[IterationsParameterName]; }
|
---|
75 | }
|
---|
76 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
77 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumIterationsParameterName]; }
|
---|
78 | }
|
---|
79 | #endregion
|
---|
80 |
|
---|
81 | #region properties
|
---|
82 |
|
---|
83 | public double RandomSamples {
|
---|
84 | get { return RandomSamplesParameter.Value.Value; }
|
---|
85 | set { RandomSamplesParameter.Value.Value = value; }
|
---|
86 | }
|
---|
87 | #endregion
|
---|
88 |
|
---|
89 | [StorableConstructor]
|
---|
90 | private RandomSamplesEvaluator(bool deserializing) : base(deserializing) { }
|
---|
91 | private RandomSamplesEvaluator(RandomSamplesEvaluator original, Cloner cloner)
|
---|
92 | : base(original, cloner) {
|
---|
93 | }
|
---|
94 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
95 | return new RandomSamplesEvaluator(this, cloner);
|
---|
96 | }
|
---|
97 |
|
---|
98 | public RandomSamplesEvaluator()
|
---|
99 | : base() {
|
---|
100 | Parameters.Add(new LookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
|
---|
101 | Parameters.Add(new LookupParameter<IOperator>(EvaluatorParameterName, "The evaluator provided by the symbolic data analysis problem."));
|
---|
102 | Parameters.Add(new LookupParameter<DoubleValue>(QualityParameterName, "The quality which is calculated by the encapsulated evaluator."));
|
---|
103 | Parameters.Add(new LookupParameter<IntRange>(FitnessCalculationPartitionParameterName, "The data partition used to calculate the fitness"));
|
---|
104 | Parameters.Add(new LookupParameter<IntRange>(FixedSamplesPartitionParameterName, "The data partition which is used to calculate the fitness on the fixed samples."));
|
---|
105 | Parameters.Add(new FixedValueParameter<PercentValue>(RandomSamplesParameterName, "The number of random samples used for fitness calculation in each island.", new PercentValue()));
|
---|
106 | Parameters.Add(new ValueLookupParameter<IntValue>(DataMigrationIntervalParameterName, "The number of generations that should pass between data migration phases."));
|
---|
107 | Parameters.Add(new LookupParameter<IntValue>(IslandIndexParameterName, "The index of the current island."));
|
---|
108 | Parameters.Add(new LookupParameter<IntValue>(IterationsParameterName, "The number of performed iterations."));
|
---|
109 | Parameters.Add(new ValueLookupParameter<IntValue>(MaximumIterationsParameterName, "The maximum number of performed iterations.") { Hidden = true });
|
---|
110 | }
|
---|
111 |
|
---|
112 | public override IOperation Apply() {
|
---|
113 | var evaluator = EvaluatorParameter.ActualValue;
|
---|
114 | var problemData = ProblemDataParameter.ActualValue;
|
---|
115 |
|
---|
116 | var samples = FitnessCalculationPartitionParameter.ActualValue;
|
---|
117 | var fixedSamples = FixedSamplesPartitionParameter.ActualValue;
|
---|
118 | var randomSamples = (int)(RandomSamples * samples.Size);
|
---|
119 |
|
---|
120 | var dataMigrationInterval = DataMigrationIntervalParameter.ActualValue.Value;
|
---|
121 | var generationValue = IterationsParameter.ActualValue;
|
---|
122 | var generation = generationValue == null ? 0 : generationValue.Value;
|
---|
123 |
|
---|
124 |
|
---|
125 | if (randomSamples > 0 && dataMigrationInterval == 0)
|
---|
126 | throw new ArgumentException("The data migration interval must not be 0 if random samples are used.");
|
---|
127 |
|
---|
128 | //create fixed rows enumerable
|
---|
129 | var rows = Enumerable.Range(fixedSamples.Start, fixedSamples.Size).Select(r => (r - samples.Start) % samples.Size + samples.Start);
|
---|
130 | //create randomly chosen rows enumerable
|
---|
131 | if (randomSamples > 0) {
|
---|
132 | var islandIndex = IslandIndexParameter.ActualValue.Value;
|
---|
133 | var random = new FastRandom(islandIndex + (generation / dataMigrationInterval));
|
---|
134 |
|
---|
135 | if (randomSamples > samples.Size - fixedSamples.Size) {
|
---|
136 | var error = string.Format("Could not select {0} random samples, because there are {1} total samples present from which {2} where used in the fixed partition. Please lower the number of random samples in the algorithm configuration.", randomSamples, samples.Size, fixedSamples.Size);
|
---|
137 | throw new OperatorExecutionException(this, error);
|
---|
138 | }
|
---|
139 | var randomRows = Enumerable.Range(samples.Start, samples.Size).Where(r => r < fixedSamples.Start || r >= fixedSamples.End);
|
---|
140 | randomRows = randomRows.SampleRandomWithoutRepetition(random, randomSamples, samples.Size - fixedSamples.Size);
|
---|
141 | rows = rows.Concat(randomRows);
|
---|
142 | }
|
---|
143 |
|
---|
144 | //filter out test rows
|
---|
145 | rows = rows.Where(r => r < problemData.TestPartition.Start || r > problemData.TestPartition.End);
|
---|
146 | //TODO change to lookup parameter
|
---|
147 | ExecutionContext.Scope.Variables.Remove("Rows");
|
---|
148 | ExecutionContext.Scope.Variables.Add(new HeuristicLab.Core.Variable("Rows", new EnumerableItem<int>(rows)));
|
---|
149 |
|
---|
150 | var executionContext = new ExecutionContext(ExecutionContext, evaluator, ExecutionContext.Scope);
|
---|
151 | var successor = evaluator.Execute(executionContext, this.CancellationToken);
|
---|
152 | return new OperationCollection(successor, base.Apply());
|
---|
153 | }
|
---|
154 | }
|
---|
155 | }
|
---|