Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis.IslandAlgorithms/HeuristicLab.Algorithms.DataAnalysis.Symbolic/3.3/ConsecutiveSamplesEvaluator.cs @ 10267

Last change on this file since 10267 was 10230, checked in by mkommend, 11 years ago

#1997: Updated symbolic island algorithm evaluators and added automatic wiring of evaluators.

File size: 9.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Operators;
28using HeuristicLab.Optimization;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33
34namespace HeuristicLab.Algorithms.DataAnalysis.Symbolic {
35  [StorableClass]
36  public sealed class ConsecutiveSamplesEvaluator : SingleSuccessorOperator, IIterationBasedOperator, ISymbolicDataAnalysisIslandGeneticAlgorithmEvaluator {
37    private const string ProblemDataParameterName = "ProblemData";
38    private const string EvaluatorParameterName = "ProblemEvaluator";
39    private const string QualityParameterName = "Quality";
40    private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition";
41    private const string FixedSamplesPartitionParameterName = "FixedSamplesPartition";
42    private const string ConsecutiveSamplesParameterName = "ConsecutiveSamples";
43    private const string OverlapParameterName = "Overlap";
44    private const string DataMigrationIntervalParameterName = "DataMigrationInterval";
45    private const string IslandIndexParameterName = "IslandIndex";
46    private const string IterationsParameterName = "Iterations";
47    private const string MaximumIterationsParameterName = "Maximum Iterations";
48
49    #region parameter properties
50    public ILookupParameter<IDataAnalysisProblemData> ProblemDataParameter {
51      get { return (ILookupParameter<IDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
52    }
53    public ILookupParameter<IOperator> EvaluatorParameter {
54      get { return (ILookupParameter<IOperator>)Parameters[EvaluatorParameterName]; }
55    }
56    public ILookupParameter<DoubleValue> QualityParameter {
57      get { return (ILookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
58    }
59    public ILookupParameter<IntRange> FitnessCalculationPartitionParameter {
60      get { return (ILookupParameter<IntRange>)Parameters[FitnessCalculationPartitionParameterName]; }
61    }
62    public ILookupParameter<IntRange> FixedSamplesPartitionParameter {
63      get { return (ILookupParameter<IntRange>)Parameters[FixedSamplesPartitionParameterName]; }
64    }
65    public IFixedValueParameter<IntValue> ConsecutiveSamplesParameter {
66      get { return (IFixedValueParameter<IntValue>)Parameters[ConsecutiveSamplesParameterName]; }
67    }
68    public IFixedValueParameter<IntValue> OverlapParameter {
69      get { return (IFixedValueParameter<IntValue>)Parameters[OverlapParameterName]; }
70    }
71    public IValueLookupParameter<IntValue> DataMigrationIntervalParameter {
72      get { return (IValueLookupParameter<IntValue>)Parameters[DataMigrationIntervalParameterName]; }
73    }
74    public ILookupParameter<IntValue> IslandIndexParameter {
75      get { return (ILookupParameter<IntValue>)Parameters[IslandIndexParameterName]; }
76    }
77    public ILookupParameter<IntValue> IterationsParameter {
78      get { return (ILookupParameter<IntValue>)Parameters[IterationsParameterName]; }
79    }
80    public IValueLookupParameter<IntValue> MaximumIterationsParameter {
81      get { return (IValueLookupParameter<IntValue>)Parameters[MaximumIterationsParameterName]; }
82    }
83
84    #endregion
85
86    #region properties
87
88    public int ConsecutiveSamples {
89      get { return ConsecutiveSamplesParameter.Value.Value; }
90      set { ConsecutiveSamplesParameter.Value.Value = value; }
91    }
92
93    public int Overlap {
94      get { return OverlapParameter.Value.Value; }
95      set { OverlapParameter.Value.Value = value; }
96    }
97    #endregion
98
99    [StorableConstructor]
100    private ConsecutiveSamplesEvaluator(bool deserializing) : base(deserializing) { }
101    private ConsecutiveSamplesEvaluator(ConsecutiveSamplesEvaluator original, Cloner cloner)
102      : base(original, cloner) {
103    }
104    public override IDeepCloneable Clone(Cloner cloner) {
105      return new ConsecutiveSamplesEvaluator(this, cloner);
106    }
107
108    public ConsecutiveSamplesEvaluator()
109      : base() {
110      Parameters.Add(new LookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
111      Parameters.Add(new LookupParameter<IOperator>(EvaluatorParameterName, "The evaluator provided by the symbolic data analysis  problem."));
112      Parameters.Add(new LookupParameter<DoubleValue>(QualityParameterName, "The quality which is calculated by the encapsulated evaluator."));
113      Parameters.Add(new LookupParameter<IntRange>(FitnessCalculationPartitionParameterName, "The data partition used to calculate the fitness"));
114      Parameters.Add(new LookupParameter<IntRange>(FixedSamplesPartitionParameterName, "The data partition which is used to calculate the fitness on the fixed samples."));
115      Parameters.Add(new FixedValueParameter<IntValue>(ConsecutiveSamplesParameterName, "The number of consecutive samples used for fitness calculation in each island.", new IntValue()));
116      Parameters.Add(new FixedValueParameter<IntValue>(OverlapParameterName, "The overlap for the consecutive samples used for every island.", new IntValue()));
117      Parameters.Add(new ValueLookupParameter<IntValue>(DataMigrationIntervalParameterName, "The number of generations that should pass between data migration phases."));
118      Parameters.Add(new LookupParameter<IntValue>(IslandIndexParameterName, "The index of the current island."));
119      Parameters.Add(new LookupParameter<IntValue>(IterationsParameterName, "The number of performed iterations."));
120      Parameters.Add(new ValueLookupParameter<IntValue>(MaximumIterationsParameterName, "The maximum number of performed iterations.") { Hidden = true });
121    }
122
123    public override IOperation Apply() {
124      var evaluator = EvaluatorParameter.ActualValue;
125      var problemData = ProblemDataParameter.ActualValue;
126      var samples = FitnessCalculationPartitionParameter.ActualValue;
127      var fixedSamples = FixedSamplesPartitionParameter.ActualValue;
128
129      var dataMigrationInterval = DataMigrationIntervalParameter.ActualValue.Value;
130      var generationValue = IterationsParameter.ActualValue;
131      var generation = generationValue == null ? 0 : generationValue.Value;
132
133      //calculat new rows for evaluation
134      if (generation % dataMigrationInterval == 0) {
135        //create fixed rows enumerable
136        var rows = Enumerable.Range(fixedSamples.Start, fixedSamples.Size);
137        //create consecutive rows enumerable
138        if (ConsecutiveSamples > 0) {
139          var islandIndex = IslandIndexParameter.ActualValue.Value;
140          var iteration = islandIndex + (generation / dataMigrationInterval);
141          var consecutiveRows = GenerateRows(samples, fixedSamples, ConsecutiveSamples, Overlap, iteration);
142          rows = rows.Concat(consecutiveRows);
143        }
144        //filter out test rows
145        rows = rows.Where(r => r < problemData.TestPartition.Start || r > problemData.TestPartition.End);
146
147        //TODO change to lookup parameter
148        ExecutionContext.Scope.Variables.Remove("Rows");
149        ExecutionContext.Scope.Variables.Add(new HeuristicLab.Core.Variable("Rows", new EnumerableItem<int>(rows)));
150      }
151
152      var executionContext = new ExecutionContext(ExecutionContext, evaluator, ExecutionContext.Scope);
153      var successor = evaluator.Execute(executionContext, this.CancellationToken);
154      return new OperationCollection(successor, base.Apply());
155    }
156
157    public static IEnumerable<int> GenerateRows(IntRange samples, IntRange fixedSamples, int consecutiveSamples, int overlap, int iteration) {
158      var consecutiveSamplesStart = (consecutiveSamples - overlap) * iteration;
159      consecutiveSamplesStart = consecutiveSamplesStart % (samples.Size - fixedSamples.Size);
160      var rows = Enumerable.Range(fixedSamples.End, samples.End - fixedSamples.End);
161      rows = rows.Concat(Enumerable.Range(samples.Start, fixedSamples.Start - samples.Start));
162      rows = rows.Concat(Enumerable.Range(fixedSamples.End, samples.End - fixedSamples.End));
163      rows = rows.Concat(Enumerable.Range(samples.Start, fixedSamples.Start - samples.Start));
164      return rows.Skip(consecutiveSamplesStart).Take(consecutiveSamples);
165    }
166  }
167}
Note: See TracBrowser for help on using the repository browser.