[4858] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 |
|
---|
| 24 | namespace HeuristicLab.Problems.DataAnalysis.Evaluators {
|
---|
| 25 | public class OnlineCovarianceEvaluator : IOnlineEvaluator {
|
---|
| 26 |
|
---|
| 27 | private double originalMean, estimatedMean, Cn;
|
---|
| 28 | private int n;
|
---|
| 29 | public double Covariance {
|
---|
| 30 | get {
|
---|
| 31 | if (n < 1)
|
---|
| 32 | throw new InvalidOperationException("No elements");
|
---|
| 33 | else
|
---|
| 34 | return Cn / n;
|
---|
| 35 | }
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | public OnlineCovarianceEvaluator() {
|
---|
| 39 | Reset();
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | #region IOnlineEvaluator Members
|
---|
| 43 | public double Value {
|
---|
| 44 | get { return Covariance; }
|
---|
| 45 | }
|
---|
| 46 | public void Reset() {
|
---|
| 47 | n = 0;
|
---|
| 48 | Cn = 0.0;
|
---|
| 49 | originalMean = 0.0;
|
---|
| 50 | estimatedMean = 0.0;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | public void Add(double original, double estimated) {
|
---|
| 54 | if (double.IsNaN(estimated) || double.IsInfinity(estimated) ||
|
---|
| 55 | double.IsNaN(original) || double.IsInfinity(original)) {
|
---|
| 56 | throw new ArgumentException("Covariance is not defined for series containing NaN or infinity elements");
|
---|
| 57 | } else {
|
---|
| 58 | n++;
|
---|
| 59 | // online calculation of tMean
|
---|
| 60 | originalMean = originalMean + (original - originalMean) / n;
|
---|
| 61 | double delta = estimated - estimatedMean; // delta = (y - yMean(n-1))
|
---|
| 62 | estimatedMean = estimatedMean + delta / n;
|
---|
| 63 |
|
---|
| 64 | // online calculation of covariance
|
---|
| 65 | Cn = Cn + delta * (original - originalMean); // C(n) = C(n-1) + (y - yMean(n-1)) (t - tMean(n))
|
---|
| 66 | }
|
---|
| 67 | }
|
---|
| 68 | #endregion
|
---|
| 69 | }
|
---|
| 70 | }
|
---|