Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis.ComplexityAnalyzer/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Analyzers/SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer.cs @ 11290

Last change on this file since 11290 was 10749, checked in by mkommend, 11 years ago

#2175: Branched DataAnalysis.Symbolic with local changes.

File size: 8.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Optimization;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31
32namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
33  /// <summary>
34  /// An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems.
35  /// </summary>
36  [Item("SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems.")]
37  [StorableClass]
38  public abstract class SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<T> : SymbolicDataAnalysisMultiObjectiveAnalyzer
39    where T : class, ISymbolicDataAnalysisSolution {
40    private const string TrainingBestSolutionsParameterName = "Best training solutions";
41    private const string TrainingBestSolutionQualitiesParameterName = "Best training solution qualities";
42    private const string UpdateAlwaysParameterName = "Always update best solutions";
43
44    #region parameter properties
45    public ILookupParameter<ItemList<T>> TrainingBestSolutionsParameter {
46      get { return (ILookupParameter<ItemList<T>>)Parameters[TrainingBestSolutionsParameterName]; }
47    }
48    public ILookupParameter<ItemList<DoubleArray>> TrainingBestSolutionQualitiesParameter {
49      get { return (ILookupParameter<ItemList<DoubleArray>>)Parameters[TrainingBestSolutionQualitiesParameterName]; }
50    }
51    public IFixedValueParameter<BoolValue> UpdateAlwaysParameter {
52      get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateAlwaysParameterName]; }
53    }
54    #endregion
55    #region properties
56    public ItemList<T> TrainingBestSolutions {
57      get { return TrainingBestSolutionsParameter.ActualValue; }
58      set { TrainingBestSolutionsParameter.ActualValue = value; }
59    }
60    public ItemList<DoubleArray> TrainingBestSolutionQualities {
61      get { return TrainingBestSolutionQualitiesParameter.ActualValue; }
62      set { TrainingBestSolutionQualitiesParameter.ActualValue = value; }
63    }
64    public BoolValue UpdateAlways {
65      get { return UpdateAlwaysParameter.Value; }
66    }
67    #endregion
68
69    [StorableConstructor]
70    protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
71    protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<T> original, Cloner cloner) : base(original, cloner) { }
72    public SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer()
73      : base() {
74      Parameters.Add(new LookupParameter<ItemList<T>>(TrainingBestSolutionsParameterName, "The training best (Pareto-optimal) symbolic data analysis solutions."));
75      Parameters.Add(new LookupParameter<ItemList<DoubleArray>>(TrainingBestSolutionQualitiesParameterName, "The qualities of the training best (Pareto-optimal) solutions."));
76      Parameters.Add(new FixedValueParameter<BoolValue>(UpdateAlwaysParameterName, "Determines if the best training solutions should always be updated regardless of its quality.", new BoolValue(false)));
77      UpdateAlwaysParameter.Hidden = true;
78    }
79
80    [StorableHook(HookType.AfterDeserialization)]
81    private void AfterDeserialization() {
82      if (!Parameters.ContainsKey(UpdateAlwaysParameterName)) {
83        Parameters.Add(new FixedValueParameter<BoolValue>(UpdateAlwaysParameterName, "Determines if the best training solutions should always be updated regardless of its quality.", new BoolValue(false)));
84        UpdateAlwaysParameter.Hidden = true;
85      }
86    }
87
88    public override IOperation Apply() {
89      var results = ResultCollection;
90      // create empty parameter and result values
91      if (TrainingBestSolutions == null) {
92        TrainingBestSolutions = new ItemList<T>();
93        TrainingBestSolutionQualities = new ItemList<DoubleArray>();
94        results.Add(new Result(TrainingBestSolutionQualitiesParameter.Name, TrainingBestSolutionQualitiesParameter.Description, TrainingBestSolutionQualities));
95        results.Add(new Result(TrainingBestSolutionsParameter.Name, TrainingBestSolutionsParameter.Description, TrainingBestSolutions));
96      }
97
98      //if the pareto front of best solutions shall be updated regardless of the quality, the list initialized empty to discard old solutions
99      List<double[]> trainingBestQualities;
100      if (UpdateAlways.Value) {
101        trainingBestQualities = new List<double[]>();
102      } else {
103        trainingBestQualities = TrainingBestSolutionQualities.Select(x => x.ToArray()).ToList();
104      }
105
106      ISymbolicExpressionTree[] trees = SymbolicExpressionTree.ToArray();
107      List<double[]> qualities = Qualities.Select(x => x.ToArray()).ToList();
108      bool[] maximization = Maximization.ToArray();
109
110      var nonDominatedInvididuals = new[] { new { Tree = default(ISymbolicExpressionTree), Qualities = default(double[]) } }.ToList();
111      nonDominatedInvididuals.Clear();
112
113      // build list of new non-dominated solutions
114      for (int i = 0; i < trees.Length; i++) {
115        if (IsNonDominated(qualities[i], nonDominatedInvididuals.Select(ind => ind.Qualities), maximization) &&
116            IsNonDominated(qualities[i], trainingBestQualities, maximization)) {
117          for (int j = nonDominatedInvididuals.Count - 1; j >= 0; j--) {
118            if (IsBetterOrEqual(qualities[i], nonDominatedInvididuals[j].Qualities, maximization)) {
119              nonDominatedInvididuals.RemoveAt(j);
120            }
121          }
122          nonDominatedInvididuals.Add(new { Tree = trees[i], Qualities = qualities[i] });
123        }
124      }
125
126      var nonDominatedSolutions = nonDominatedInvididuals.Select(x => new { Solution = CreateSolution(x.Tree, x.Qualities), Qualities = x.Qualities }).ToList();
127
128      #region update Pareto-optimal solution archive
129      if (nonDominatedSolutions.Count > 0) {
130        //add old non-dominated solutions only if they are not dominated by one of the new solutions
131        for (int i = 0; i < trainingBestQualities.Count; i++) {
132          if (IsNonDominated(trainingBestQualities[i], nonDominatedSolutions.Select(x => x.Qualities), maximization)) {
133            nonDominatedSolutions.Add(new { Solution = TrainingBestSolutions[i], Qualities = TrainingBestSolutionQualities[i].ToArray() });
134          }
135        }
136
137        var sortedNonDominatedSolutions = nonDominatedSolutions.OrderByDescending(x => x.Qualities[0]);
138        results[TrainingBestSolutionsParameter.Name].Value = new ItemList<T>(sortedNonDominatedSolutions.Select(x => x.Solution));
139        results[TrainingBestSolutionQualitiesParameter.Name].Value = new ItemList<DoubleArray>(sortedNonDominatedSolutions.Select(x => new DoubleArray(x.Qualities)));
140      }
141      #endregion
142      return base.Apply();
143    }
144
145    protected abstract T CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality);
146
147    private bool IsNonDominated(double[] point, IEnumerable<double[]> points, bool[] maximization) {
148      foreach (var refPoint in points) {
149        bool refPointDominatesPoint = IsBetterOrEqual(refPoint, point, maximization);
150        if (refPointDominatesPoint) return false;
151      }
152      return true;
153    }
154
155    private bool IsBetterOrEqual(double[] lhs, double[] rhs, bool[] maximization) {
156      for (int i = 0; i < lhs.Length; i++) {
157        var result = IsBetterOrEqual(lhs[i], rhs[i], maximization[i]);
158        if (!result) return false;
159      }
160      return true;
161    }
162
163    private bool IsBetterOrEqual(double lhs, double rhs, bool maximization) {
164      if (maximization) return lhs >= rhs;
165      else return lhs <= rhs;
166    }
167  }
168}
Note: See TracBrowser for help on using the repository browser.