1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
34 | /// <summary>
|
---|
35 | /// An operator that analyzes the training best symbolic regression solution for multi objective symbolic regression problems.
|
---|
36 | /// </summary>
|
---|
37 | [Item("SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic regression solution for multi objective symbolic regression problems.")]
|
---|
38 | [StorableClass]
|
---|
39 | public sealed class SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<ISymbolicRegressionSolution>,
|
---|
40 | ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator {
|
---|
41 | private const string ProblemDataParameterName = "ProblemData";
|
---|
42 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
|
---|
43 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
44 | private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
|
---|
45 |
|
---|
46 | #region parameter properties
|
---|
47 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
48 | get { return (ILookupParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
49 | }
|
---|
50 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
51 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
52 | }
|
---|
53 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
54 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
55 | }
|
---|
56 | public ILookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
|
---|
57 | get { return (ILookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
|
---|
58 | }
|
---|
59 | #endregion
|
---|
60 |
|
---|
61 | [StorableConstructor]
|
---|
62 | private SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
63 | private SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
64 | public SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer()
|
---|
65 | : base() {
|
---|
66 | Parameters.Add(new LookupParameter<IRegressionProblemData>(ProblemDataParameterName, "The problem data for the symbolic regression solution."));
|
---|
67 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
|
---|
68 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic regression model."));
|
---|
69 | Parameters.Add(new LookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "Maximal length of the symbolic expression."));
|
---|
70 | }
|
---|
71 |
|
---|
72 | [StorableHook(HookType.AfterDeserialization)]
|
---|
73 | private void AfterDeserialization() {
|
---|
74 | if (!Parameters.ContainsKey(MaximumSymbolicExpressionTreeLengthParameterName))
|
---|
75 | Parameters.Add(new LookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "Maximal length of the symbolic expression."));
|
---|
76 | }
|
---|
77 |
|
---|
78 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
79 | return new SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(this, cloner);
|
---|
80 | }
|
---|
81 |
|
---|
82 | protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) {
|
---|
83 | var model = new SymbolicRegressionModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
84 | if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
|
---|
85 | return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone());
|
---|
86 | }
|
---|
87 |
|
---|
88 | public override IOperation Apply() {
|
---|
89 | var operation = base.Apply();
|
---|
90 |
|
---|
91 | var paretoFront = TrainingBestSolutionsParameter.ActualValue;
|
---|
92 |
|
---|
93 | IResult result;
|
---|
94 | ScatterPlot qualityToTreeSize;
|
---|
95 | if (!ResultCollection.TryGetValue("Pareto Front Analysis", out result)) {
|
---|
96 | qualityToTreeSize = new ScatterPlot("Quality vs Tree Size", "");
|
---|
97 | qualityToTreeSize.VisualProperties.XAxisMinimumAuto = false;
|
---|
98 | qualityToTreeSize.VisualProperties.XAxisMaximumAuto = false;
|
---|
99 | qualityToTreeSize.VisualProperties.YAxisMinimumAuto = false;
|
---|
100 | qualityToTreeSize.VisualProperties.YAxisMaximumAuto = false;
|
---|
101 |
|
---|
102 | qualityToTreeSize.VisualProperties.XAxisMinimumFixedValue = 0;
|
---|
103 | qualityToTreeSize.VisualProperties.XAxisMaximumFixedValue = MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value;
|
---|
104 | qualityToTreeSize.VisualProperties.YAxisMinimumFixedValue = 0;
|
---|
105 | qualityToTreeSize.VisualProperties.YAxisMaximumFixedValue = 2;
|
---|
106 | ResultCollection.Add(new Result("Pareto Front Analysis", qualityToTreeSize));
|
---|
107 | } else {
|
---|
108 | qualityToTreeSize = (ScatterPlot)result.Value;
|
---|
109 | }
|
---|
110 |
|
---|
111 | var problemData = ProblemDataParameter.ActualValue;
|
---|
112 | var constantValue = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average();
|
---|
113 | var constantSolution = CreateConstantSymbolicRegressionSolution(constantValue);
|
---|
114 |
|
---|
115 | int previousTreeLength = constantSolution.Model.SymbolicExpressionTree.Length;
|
---|
116 | var sizeParetoFront = new LinkedList<ISymbolicRegressionSolution>();
|
---|
117 | sizeParetoFront.AddLast(constantSolution);
|
---|
118 |
|
---|
119 | foreach (var solution in paretoFront.OrderBy(s => s.Model.SymbolicExpressionTree.Length)) {
|
---|
120 | int treeLength = solution.Model.SymbolicExpressionTree.Length;
|
---|
121 | if (!sizeParetoFront.Any()) sizeParetoFront.AddLast(solution);
|
---|
122 | if (solution.TrainingNormalizedMeanSquaredError < sizeParetoFront.Last.Value.TrainingNormalizedMeanSquaredError) {
|
---|
123 | if (treeLength == previousTreeLength)
|
---|
124 | sizeParetoFront.RemoveLast();
|
---|
125 | sizeParetoFront.AddLast(solution);
|
---|
126 | }
|
---|
127 | previousTreeLength = treeLength;
|
---|
128 | }
|
---|
129 |
|
---|
130 | qualityToTreeSize.Rows.Clear();
|
---|
131 | var trainingRow = new ScatterPlotDataRow("Training NMSE", "", sizeParetoFront.Select(x => new Point2D<double>(x.Model.SymbolicExpressionTree.Length, x.TrainingNormalizedMeanSquaredError)));
|
---|
132 | trainingRow.VisualProperties.PointSize = 5;
|
---|
133 | var testRow = new ScatterPlotDataRow("Test NMSE", "", sizeParetoFront.Select(x => new Point2D<double>(x.Model.SymbolicExpressionTree.Length, x.TestNormalizedMeanSquaredError)));
|
---|
134 | testRow.VisualProperties.PointSize = 5;
|
---|
135 | qualityToTreeSize.Rows.Add(trainingRow);
|
---|
136 | qualityToTreeSize.Rows.Add(testRow);
|
---|
137 |
|
---|
138 | double trainingHyperVolume, testHyperVolume;
|
---|
139 | CalculateNormalizedHyperVolume(sizeParetoFront, out trainingHyperVolume, out testHyperVolume);
|
---|
140 |
|
---|
141 | DoubleValue trainingHyperVolumeResult, testHyperVolumeResult;
|
---|
142 | if (!ResultCollection.TryGetValue("HyperVolume training", out result)) {
|
---|
143 | trainingHyperVolumeResult = new DoubleValue();
|
---|
144 | ResultCollection.Add(new Result("HyperVolume training", trainingHyperVolumeResult));
|
---|
145 | } else trainingHyperVolumeResult = (DoubleValue)result.Value;
|
---|
146 |
|
---|
147 | if (!ResultCollection.TryGetValue("HyperVolume test", out result)) {
|
---|
148 | testHyperVolumeResult = new DoubleValue();
|
---|
149 | ResultCollection.Add(new Result("HyperVolume test", testHyperVolumeResult));
|
---|
150 | } else testHyperVolumeResult = (DoubleValue)result.Value;
|
---|
151 |
|
---|
152 | trainingHyperVolumeResult.Value = trainingHyperVolume;
|
---|
153 | testHyperVolumeResult.Value = testHyperVolume;
|
---|
154 |
|
---|
155 | return operation;
|
---|
156 | }
|
---|
157 |
|
---|
158 | private void CalculateNormalizedHyperVolume(IEnumerable<ISymbolicRegressionSolution> solutions, out double trainingHyperVolume, out double testHyperVolume) {
|
---|
159 | trainingHyperVolume = 0.0;
|
---|
160 | testHyperVolume = 0.0;
|
---|
161 |
|
---|
162 | var prevX = 0;
|
---|
163 | var prevYTraining = 1.0;
|
---|
164 | var prevYTest = 1.0;
|
---|
165 | var treeSize = 0;
|
---|
166 |
|
---|
167 | foreach (var solution in solutions) {
|
---|
168 | treeSize = solution.Model.SymbolicExpressionTree.Length;
|
---|
169 | trainingHyperVolume += (prevYTraining + solution.TrainingNormalizedMeanSquaredError) * (treeSize - prevX) / 2;
|
---|
170 | testHyperVolume += (prevYTest + solution.TestNormalizedMeanSquaredError) * (treeSize - prevX) / 2;
|
---|
171 | prevX = treeSize;
|
---|
172 | prevYTraining = solution.TrainingNormalizedMeanSquaredError;
|
---|
173 | prevYTest = solution.TestNormalizedMeanSquaredError;
|
---|
174 | }
|
---|
175 |
|
---|
176 | trainingHyperVolume = trainingHyperVolume / treeSize;
|
---|
177 | testHyperVolume = testHyperVolume / treeSize;
|
---|
178 | }
|
---|
179 |
|
---|
180 | private ISymbolicRegressionSolution CreateConstantSymbolicRegressionSolution(double constantValue) {
|
---|
181 | var grammar = new ArithmeticExpressionGrammar();
|
---|
182 | var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode();
|
---|
183 | var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode();
|
---|
184 | var constantTreeNode = new ConstantTreeNode(new Constant()) { Value = constantValue };
|
---|
185 | rootNode.AddSubtree(startNode);
|
---|
186 | startNode.AddSubtree(constantTreeNode);
|
---|
187 | var tree = new SymbolicExpressionTree();
|
---|
188 | tree.Root = rootNode;
|
---|
189 |
|
---|
190 | var model = new SymbolicRegressionModel(tree, SymbolicDataAnalysisTreeInterpreterParameter.ActualValue);
|
---|
191 | var solution = new SymbolicRegressionSolution(model, ProblemDataParameter.ActualValue);
|
---|
192 | return solution;
|
---|
193 | }
|
---|
194 | }
|
---|
195 | }
|
---|