Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis.ComplexityAnalyzer/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveProblem.cs @ 11407

Last change on this file since 11407 was 11310, checked in by mkommend, 10 years ago

#2175: Merged trunk changes into complexity branch.

File size: 5.4 KB
RevLine 
[5618]1#region License Information
2/* HeuristicLab
[11310]3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5618]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
[5716]26using HeuristicLab.Parameters;
[5618]27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
30  [Item("Symbolic Regression Problem (multi objective)", "Represents a multi objective symbolic regression problem.")]
31  [StorableClass]
32  [Creatable("Problems")]
[5733]33  public class SymbolicRegressionMultiObjectiveProblem : SymbolicDataAnalysisMultiObjectiveProblem<IRegressionProblemData, ISymbolicRegressionMultiObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IRegressionProblem {
[5618]34    private const double PunishmentFactor = 10;
[5685]35    private const int InitialMaximumTreeDepth = 8;
36    private const int InitialMaximumTreeLength = 25;
[5770]37    private const string EstimationLimitsParameterName = "EstimationLimits";
38    private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic regression model.";
[5618]39
[5685]40    #region parameter properties
[5770]41    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
42      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
[5685]43    }
44    #endregion
[5770]45
[5685]46    #region properties
[5770]47    public DoubleLimit EstimationLimits {
48      get { return EstimationLimitsParameter.Value; }
[5685]49    }
[5770]50
[5685]51    #endregion
[5770]52
[5618]53    [StorableConstructor]
54    protected SymbolicRegressionMultiObjectiveProblem(bool deserializing) : base(deserializing) { }
[8175]55    protected SymbolicRegressionMultiObjectiveProblem(SymbolicRegressionMultiObjectiveProblem original, Cloner cloner)
56      : base(original, cloner) {
57      RegisterEventHandlers();
58    }
[5618]59    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionMultiObjectiveProblem(this, cloner); }
60
61    public SymbolicRegressionMultiObjectiveProblem()
62      : base(new RegressionProblemData(), new SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
[5847]63      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
[5685]64
[5854]65      EstimationLimitsParameter.Hidden = true;
66
[8664]67      ApplyLinearScalingParameter.Value.Value = true;
[5742]68      Maximization = new BoolArray(new bool[] { true, false });
[5685]69      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
70      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
71
[8175]72      RegisterEventHandlers();
[6803]73      ConfigureGrammarSymbols();
[5685]74      InitializeOperators();
[5716]75      UpdateEstimationLimits();
[5618]76    }
77
[8175]78    [StorableHook(HookType.AfterDeserialization)]
79    private void AfterDeserialization() {
80      RegisterEventHandlers();
81    }
82
83    private void RegisterEventHandlers() {
84      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
85    }
86
[6803]87    private void ConfigureGrammarSymbols() {
88      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
89      if (grammar != null) grammar.ConfigureAsDefaultRegressionGrammar();
90    }
91
[5685]92    private void InitializeOperators() {
93      Operators.Add(new SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer());
94      Operators.Add(new SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer());
95      ParameterizeOperators();
96    }
97
98    private void UpdateEstimationLimits() {
[8139]99      if (ProblemData.TrainingIndices.Any()) {
100        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
[5618]101        var mean = targetValues.Average();
102        var range = targetValues.Max() - targetValues.Min();
[5770]103        EstimationLimits.Upper = mean + PunishmentFactor * range;
104        EstimationLimits.Lower = mean - PunishmentFactor * range;
[6754]105      } else {
106        EstimationLimits.Upper = double.MaxValue;
107        EstimationLimits.Lower = double.MinValue;
[5618]108      }
109    }
[5623]110
[5685]111    protected override void OnProblemDataChanged() {
112      base.OnProblemDataChanged();
113      UpdateEstimationLimits();
114    }
115
116    protected override void ParameterizeOperators() {
117      base.ParameterizeOperators();
[5770]118      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
119        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
120        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
121          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
122        }
[5685]123      }
124    }
[5618]125  }
126}
Note: See TracBrowser for help on using the repository browser.