Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis.ComplexityAnalyzer/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/PearsonRSquaredNumberOfVariablesEvaluator.cs @ 12147

Last change on this file since 12147 was 12147, checked in by mkommend, 10 years ago

#2175: Added rounding of quality values to multi-objective sym reg evaluators.

File size: 5.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Security.Cryptography;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32
33namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
34  [Item("Pearson R² & Number of Variables Evaluator", "Calculates the Pearson R² and the number of used variables of a symbolic regression solution.")]
35  [StorableClass]
36  public class PearsonRSquaredNumberOfVariablesEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
37    private const string useConstantOptimizationParameterName = "Use constant optimization";
38    public IFixedValueParameter<BoolValue> UseConstantOptimizationParameter {
39      get { return (IFixedValueParameter<BoolValue>)Parameters[useConstantOptimizationParameterName]; }
40    }
41    public bool UseConstantOptimization {
42      get { return UseConstantOptimizationParameter.Value.Value; }
43      set { UseConstantOptimizationParameter.Value.Value = value; }
44    }
45
46    [StorableConstructor]
47    protected PearsonRSquaredNumberOfVariablesEvaluator(bool deserializing) : base(deserializing) { }
48    protected PearsonRSquaredNumberOfVariablesEvaluator(PearsonRSquaredNumberOfVariablesEvaluator original, Cloner cloner)
49      : base(original, cloner) {
50    }
51    public override IDeepCloneable Clone(Cloner cloner) {
52      return new PearsonRSquaredNumberOfVariablesEvaluator(this, cloner);
53    }
54
55    public PearsonRSquaredNumberOfVariablesEvaluator()
56      : base() {
57      Parameters.Add(new FixedValueParameter<BoolValue>(useConstantOptimizationParameterName, "", new BoolValue(false)));
58    }
59
60    public override IEnumerable<bool> Maximization { get { return new bool[2] { true, false }; } }
61
62    public override IOperation InstrumentedApply() {
63      IEnumerable<int> rows = GenerateRowsToEvaluate();
64      var solution = SymbolicExpressionTreeParameter.ActualValue;
65      var problemData = ProblemDataParameter.ActualValue;
66      var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
67      var estimationLimits = EstimationLimitsParameter.ActualValue;
68      var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
69
70      if (UseConstantOptimization) {
71        SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows, applyLinearScaling, 5, estimationLimits.Upper, estimationLimits.Lower);
72      }
73      double[] qualities = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
74      QualitiesParameter.ActualValue = new DoubleArray(qualities);
75      return base.InstrumentedApply();
76    }
77
78    public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
79      double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
80      r2 = Math.Round(r2, 3);
81      return new double[2] { r2, solution.IterateNodesPostfix().OfType<VariableTreeNode>().Count() };
82    }
83
84    public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
85      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
86      EstimationLimitsParameter.ExecutionContext = context;
87      ApplyLinearScalingParameter.ExecutionContext = context;
88
89      double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
90
91      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
92      EstimationLimitsParameter.ExecutionContext = null;
93      ApplyLinearScalingParameter.ExecutionContext = null;
94
95      return quality;
96    }
97  }
98}
Note: See TracBrowser for help on using the repository browser.