1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
32 | [Item("Pearson R² & Nested Tree size Evaluator", "Calculates the Pearson R² and the nested tree size of a symbolic regression solution.")]
|
---|
33 | [StorableClass]
|
---|
34 | public class PearsonRSquaredNestedTreeSizeEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
|
---|
35 | private const string useConstantOptimizationParameterName = "Use constant optimization";
|
---|
36 | public IFixedValueParameter<BoolValue> UseConstantOptimizationParameter {
|
---|
37 | get { return (IFixedValueParameter<BoolValue>)Parameters[useConstantOptimizationParameterName]; }
|
---|
38 | }
|
---|
39 | public bool UseConstantOptimization {
|
---|
40 | get { return UseConstantOptimizationParameter.Value.Value; }
|
---|
41 | set { UseConstantOptimizationParameter.Value.Value = value; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | [StorableConstructor]
|
---|
45 | protected PearsonRSquaredNestedTreeSizeEvaluator(bool deserializing) : base(deserializing) { }
|
---|
46 | protected PearsonRSquaredNestedTreeSizeEvaluator(PearsonRSquaredNestedTreeSizeEvaluator original, Cloner cloner)
|
---|
47 | : base(original, cloner) {
|
---|
48 | }
|
---|
49 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
50 | return new PearsonRSquaredNestedTreeSizeEvaluator(this, cloner);
|
---|
51 | }
|
---|
52 |
|
---|
53 | public PearsonRSquaredNestedTreeSizeEvaluator()
|
---|
54 | : base() {
|
---|
55 | Parameters.Add(new FixedValueParameter<BoolValue>(useConstantOptimizationParameterName, "", new BoolValue(false)));
|
---|
56 | }
|
---|
57 |
|
---|
58 | public override IEnumerable<bool> Maximization { get { return new bool[2] { true, false }; } }
|
---|
59 |
|
---|
60 | public override IOperation InstrumentedApply() {
|
---|
61 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
62 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
63 | var problemData = ProblemDataParameter.ActualValue;
|
---|
64 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
65 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
66 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
67 |
|
---|
68 | if (UseConstantOptimization) {
|
---|
69 | SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows, applyLinearScaling, 5, estimationLimits.Upper, estimationLimits.Lower);
|
---|
70 | }
|
---|
71 |
|
---|
72 | double[] qualities = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
73 | QualitiesParameter.ActualValue = new DoubleArray(qualities);
|
---|
74 | return base.InstrumentedApply();
|
---|
75 | }
|
---|
76 |
|
---|
77 | public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
|
---|
78 | double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
79 | return new double[2] { r2, solution.IterateNodesPostfix().Sum(n => n.GetLength()) };
|
---|
80 | }
|
---|
81 |
|
---|
82 | public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
83 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
84 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
85 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
86 |
|
---|
87 | double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
88 |
|
---|
89 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
90 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
91 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
92 |
|
---|
93 | return quality;
|
---|
94 | }
|
---|
95 | }
|
---|
96 | }
|
---|