1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
27 | public class OnlineLinearScalingParameterCalculator {
|
---|
28 |
|
---|
29 | /// <summary>
|
---|
30 | /// Additive constant
|
---|
31 | /// </summary>
|
---|
32 | public double Alpha {
|
---|
33 | get {
|
---|
34 | if (cnt < 2)
|
---|
35 | return 0;
|
---|
36 | else
|
---|
37 | return targetMeanCalculator.Mean - Beta * originalMeanAndVarianceCalculator.Mean;
|
---|
38 | }
|
---|
39 | }
|
---|
40 |
|
---|
41 | /// <summary>
|
---|
42 | /// Multiplicative factor
|
---|
43 | /// </summary>
|
---|
44 | public double Beta {
|
---|
45 | get {
|
---|
46 | if (cnt < 2)
|
---|
47 | return 1;
|
---|
48 | else if (originalMeanAndVarianceCalculator.PopulationVariance.IsAlmost(0.0))
|
---|
49 | return 1;
|
---|
50 | else
|
---|
51 | return originalTargetCovarianceEvaluator.Covariance / originalMeanAndVarianceCalculator.PopulationVariance;
|
---|
52 | }
|
---|
53 | }
|
---|
54 |
|
---|
55 | private int cnt;
|
---|
56 | private OnlineMeanAndVarianceCalculator targetMeanCalculator;
|
---|
57 | private OnlineMeanAndVarianceCalculator originalMeanAndVarianceCalculator;
|
---|
58 | private OnlineCovarianceEvaluator originalTargetCovarianceEvaluator;
|
---|
59 |
|
---|
60 | public OnlineLinearScalingParameterCalculator() {
|
---|
61 | targetMeanCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
62 | originalMeanAndVarianceCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
63 | originalTargetCovarianceEvaluator = new OnlineCovarianceEvaluator();
|
---|
64 | Reset();
|
---|
65 | }
|
---|
66 |
|
---|
67 | public void Reset() {
|
---|
68 | cnt = 0;
|
---|
69 | targetMeanCalculator.Reset();
|
---|
70 | originalMeanAndVarianceCalculator.Reset();
|
---|
71 | originalTargetCovarianceEvaluator.Reset();
|
---|
72 | }
|
---|
73 |
|
---|
74 | /// <summary>
|
---|
75 | /// Calculates linear scaling parameters in one pass.
|
---|
76 | /// The formulas to calculate the scaling parameters were taken from Scaled Symblic Regression by Maarten Keijzer.
|
---|
77 | /// http://www.springerlink.com/content/x035121165125175/
|
---|
78 | /// </summary>
|
---|
79 | public void Add(double original, double target) {
|
---|
80 | // validity of values is checked in mean calculator and covariance calculator
|
---|
81 | targetMeanCalculator.Add(target);
|
---|
82 | originalMeanAndVarianceCalculator.Add(original);
|
---|
83 | originalTargetCovarianceEvaluator.Add(original, target);
|
---|
84 |
|
---|
85 | cnt++;
|
---|
86 | }
|
---|
87 |
|
---|
88 | /// <summary>
|
---|
89 | /// Calculates alpha and beta parameters to linearly scale elements of original to the scale and location of target
|
---|
90 | /// original[i] * beta + alpha
|
---|
91 | /// </summary>
|
---|
92 | /// <param name="original">Values that should be scaled</param>
|
---|
93 | /// <param name="target">Target values to which the original values should be scaled</param>
|
---|
94 | /// <param name="alpha">Additive constant for the linear scaling</param>
|
---|
95 | /// <param name="beta">Multiplicative factor for the linear scaling</param>
|
---|
96 | public static void Calculate(IEnumerable<double> original, IEnumerable<double> target, out double alpha, out double beta) {
|
---|
97 | OnlineLinearScalingParameterCalculator calculator = new OnlineLinearScalingParameterCalculator();
|
---|
98 | IEnumerator<double> originalEnumerator = original.GetEnumerator();
|
---|
99 | IEnumerator<double> targetEnumerator = target.GetEnumerator();
|
---|
100 |
|
---|
101 | // always move forward both enumerators (do not use short-circuit evaluation!)
|
---|
102 | while (originalEnumerator.MoveNext() & targetEnumerator.MoveNext()) {
|
---|
103 | double originalElement = originalEnumerator.Current;
|
---|
104 | double targetElement = targetEnumerator.Current;
|
---|
105 | // don't consider very large or very small values for scaling
|
---|
106 | // careful: this also excludes infinity and NaN values
|
---|
107 | if (originalElement > -1.0E07 && originalElement < 1.0E07) {
|
---|
108 | calculator.Add(originalElement, targetElement);
|
---|
109 | }
|
---|
110 | }
|
---|
111 |
|
---|
112 | // check if both enumerators are at the end to make sure both enumerations have the same length
|
---|
113 | if (originalEnumerator.MoveNext() || targetEnumerator.MoveNext()) {
|
---|
114 | throw new ArgumentException("Number of elements in original and target enumeration do not match.");
|
---|
115 | } else {
|
---|
116 | alpha = calculator.Alpha;
|
---|
117 | beta = calculator.Beta;
|
---|
118 | }
|
---|
119 | }
|
---|
120 | }
|
---|
121 | }
|
---|