[5620] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[5777] | 22 | using System;
|
---|
[5620] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
[5777] | 27 | using HeuristicLab.Optimization;
|
---|
[5620] | 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
[5816] | 32 | /// Represents a classification data analysis solution
|
---|
[5620] | 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
[5816] | 35 | public class ClassificationSolution : DataAnalysisSolution, IClassificationSolution {
|
---|
[5649] | 36 | private const string TrainingAccuracyResultName = "Accuracy (training)";
|
---|
| 37 | private const string TestAccuracyResultName = "Accuracy (test)";
|
---|
[5717] | 38 |
|
---|
| 39 | public new IClassificationModel Model {
|
---|
| 40 | get { return (IClassificationModel)base.Model; }
|
---|
| 41 | protected set { base.Model = value; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public new IClassificationProblemData ProblemData {
|
---|
| 45 | get { return (IClassificationProblemData)base.ProblemData; }
|
---|
| 46 | protected set { base.ProblemData = value; }
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | public double TrainingAccuracy {
|
---|
| 50 | get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
|
---|
| 51 | private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | public double TestAccuracy {
|
---|
| 55 | get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
|
---|
| 56 | private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
|
---|
| 57 | }
|
---|
| 58 |
|
---|
[5620] | 59 | [StorableConstructor]
|
---|
| 60 | protected ClassificationSolution(bool deserializing) : base(deserializing) { }
|
---|
| 61 | protected ClassificationSolution(ClassificationSolution original, Cloner cloner)
|
---|
| 62 | : base(original, cloner) {
|
---|
| 63 | }
|
---|
[5624] | 64 | public ClassificationSolution(IClassificationModel model, IClassificationProblemData problemData)
|
---|
| 65 | : base(model, problemData) {
|
---|
[5717] | 66 | Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
| 67 | Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
| 68 | RecalculateResults();
|
---|
| 69 | }
|
---|
| 70 |
|
---|
[5816] | 71 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 72 | return new ClassificationSolution(this, cloner);
|
---|
| 73 | }
|
---|
| 74 |
|
---|
[5717] | 75 | protected override void OnProblemDataChanged(EventArgs e) {
|
---|
| 76 | base.OnProblemDataChanged(e);
|
---|
| 77 | RecalculateResults();
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | protected override void OnModelChanged(EventArgs e) {
|
---|
| 81 | base.OnModelChanged(e);
|
---|
| 82 | RecalculateResults();
|
---|
| 83 | }
|
---|
| 84 |
|
---|
[5736] | 85 | protected void RecalculateResults() {
|
---|
[5649] | 86 | double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
|
---|
| 87 | IEnumerable<double> originalTrainingClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
| 88 | double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
|
---|
| 89 | IEnumerable<double> originalTestClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
|
---|
| 90 |
|
---|
| 91 | double trainingAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues);
|
---|
| 92 | double testAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTestClassValues, originalTestClassValues);
|
---|
| 93 |
|
---|
[5717] | 94 | TrainingAccuracy = trainingAccuracy;
|
---|
| 95 | TestAccuracy = testAccuracy;
|
---|
[5620] | 96 | }
|
---|
| 97 |
|
---|
[5649] | 98 | public virtual IEnumerable<double> EstimatedClassValues {
|
---|
[5620] | 99 | get {
|
---|
| 100 | return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
|
---|
| 101 | }
|
---|
| 102 | }
|
---|
| 103 |
|
---|
[5649] | 104 | public virtual IEnumerable<double> EstimatedTrainingClassValues {
|
---|
[5620] | 105 | get {
|
---|
| 106 | return GetEstimatedClassValues(ProblemData.TrainingIndizes);
|
---|
| 107 | }
|
---|
| 108 | }
|
---|
| 109 |
|
---|
[5649] | 110 | public virtual IEnumerable<double> EstimatedTestClassValues {
|
---|
[5620] | 111 | get {
|
---|
| 112 | return GetEstimatedClassValues(ProblemData.TestIndizes);
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
[5649] | 116 | public virtual IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
|
---|
| 117 | return Model.GetEstimatedClassValues(ProblemData.Dataset, rows);
|
---|
[5620] | 118 | }
|
---|
| 119 | }
|
---|
| 120 | }
|
---|