1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using System;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
35 | /// <summary>
|
---|
36 | /// Represents a symbolic classification model
|
---|
37 | /// </summary>
|
---|
38 | [StorableClass]
|
---|
39 | [Item(Name = "SymbolicDiscriminantFunctionClassificationModel", Description = "Represents a symbolic classification model unsing a discriminant function.")]
|
---|
40 | public class SymbolicDiscriminantFunctionClassificationModel : SymbolicDataAnalysisModel, ISymbolicDiscriminantFunctionClassificationModel {
|
---|
41 |
|
---|
42 | [Storable]
|
---|
43 | private double[] thresholds;
|
---|
44 | public IEnumerable<double> Thresholds {
|
---|
45 | get { return (IEnumerable<double>)thresholds.Clone(); }
|
---|
46 | private set { thresholds = value.ToArray(); }
|
---|
47 | }
|
---|
48 | [Storable]
|
---|
49 | private double[] classValues;
|
---|
50 | public IEnumerable<double> ClassValues {
|
---|
51 | get { return (IEnumerable<double>)classValues.Clone(); }
|
---|
52 | private set { classValues = value.ToArray(); }
|
---|
53 | }
|
---|
54 | [Storable]
|
---|
55 | private double lowerEstimationLimit;
|
---|
56 | public double LowerEstimationLimit { get { return lowerEstimationLimit; } }
|
---|
57 | [Storable]
|
---|
58 | private double upperEstimationLimit;
|
---|
59 | public double UpperEstimationLimit { get { return upperEstimationLimit; } }
|
---|
60 |
|
---|
61 | [StorableConstructor]
|
---|
62 | protected SymbolicDiscriminantFunctionClassificationModel(bool deserializing) : base(deserializing) { }
|
---|
63 | protected SymbolicDiscriminantFunctionClassificationModel(SymbolicDiscriminantFunctionClassificationModel original, Cloner cloner)
|
---|
64 | : base(original, cloner) {
|
---|
65 | classValues = (double[])original.classValues.Clone();
|
---|
66 | thresholds = (double[])original.thresholds.Clone();
|
---|
67 | lowerEstimationLimit = original.lowerEstimationLimit;
|
---|
68 | upperEstimationLimit = original.upperEstimationLimit;
|
---|
69 | }
|
---|
70 | public SymbolicDiscriminantFunctionClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
71 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
|
---|
72 | : base(tree, interpreter) {
|
---|
73 | thresholds = new double[] { double.NegativeInfinity };
|
---|
74 | classValues = new double[] { 0.0 };
|
---|
75 | this.lowerEstimationLimit = lowerEstimationLimit;
|
---|
76 | this.upperEstimationLimit = upperEstimationLimit;
|
---|
77 | }
|
---|
78 |
|
---|
79 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
80 | return new SymbolicDiscriminantFunctionClassificationModel(this, cloner);
|
---|
81 | }
|
---|
82 |
|
---|
83 | public void SetThresholdsAndClassValues(IEnumerable<double> thresholds, IEnumerable<double> classValues) {
|
---|
84 | var classValuesArr = classValues.ToArray();
|
---|
85 | var thresholdsArr = thresholds.ToArray();
|
---|
86 | if (thresholdsArr.Length != classValuesArr.Length) throw new ArgumentException();
|
---|
87 |
|
---|
88 | this.classValues = classValuesArr;
|
---|
89 | this.thresholds = thresholdsArr;
|
---|
90 | OnThresholdsChanged(EventArgs.Empty);
|
---|
91 | }
|
---|
92 |
|
---|
93 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
94 | return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows)
|
---|
95 | .LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
96 | }
|
---|
97 |
|
---|
98 | public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
99 | foreach (var x in GetEstimatedValues(dataset, rows)) {
|
---|
100 | int classIndex = 0;
|
---|
101 | // find first threshold value which is larger than x => class index = threshold index + 1
|
---|
102 | for (int i = 0; i < thresholds.Length; i++) {
|
---|
103 | if (x > thresholds[i]) classIndex++;
|
---|
104 | else break;
|
---|
105 | }
|
---|
106 | yield return classValues.ElementAt(classIndex - 1);
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | #region events
|
---|
111 | public event EventHandler ThresholdsChanged;
|
---|
112 | protected virtual void OnThresholdsChanged(EventArgs e) {
|
---|
113 | var listener = ThresholdsChanged;
|
---|
114 | if (listener != null) listener(this, e);
|
---|
115 | }
|
---|
116 | #endregion
|
---|
117 | }
|
---|
118 | }
|
---|