Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis/3.4/RegressionSolution.cs @ 5723

Last change on this file since 5723 was 5717, checked in by gkronber, 14 years ago

#1418 Implemented interactive simplifier views for symbolic classification and regression.

File size: 7.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Operators;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Optimization;
31using System;
32
33namespace HeuristicLab.Problems.DataAnalysis {
34  /// <summary>
35  /// Abstract base class for regression data analysis solutions
36  /// </summary>
37  [StorableClass]
38  public abstract class RegressionSolution : DataAnalysisSolution, IRegressionSolution {
39    private const string TrainingMeanSquaredErrorResultName = "Mean squared error (training)";
40    private const string TestMeanSquaredErrorResultName = "Mean squared error (test)";
41    private const string TrainingSquaredCorrelationResultName = "Pearson's R² (training)";
42    private const string TestSquaredCorrelationResultName = "Pearson's R² (test)";
43    private const string TrainingRelativeErrorResultName = "Average relative error (training)";
44    private const string TestRelativeErrorResultName = "Average relative error (test)";
45
46    public new IRegressionModel Model {
47      get { return (IRegressionModel)base.Model; }
48      protected set { base.Model = value; }
49    }
50
51    public new IRegressionProblemData ProblemData {
52      get { return (IRegressionProblemData)base.ProblemData; }
53      protected set { base.ProblemData = value; }
54    }
55
56    public double TrainingMeanSquaredError {
57      get { return ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value; }
58      private set { ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value = value; }
59    }
60
61    public double TestMeanSquaredError {
62      get { return ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value; }
63      private set { ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value = value; }
64    }
65
66    public double TrainingRSquared {
67      get { return ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value; }
68      private set { ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value = value; }
69    }
70
71    public double TestRSquared {
72      get { return ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value; }
73      private set { ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value = value; }
74    }
75
76    public double TrainingRelativeError {
77      get { return ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value; }
78      private set { ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value = value; }
79    }
80
81    public double TestRelativeError {
82      get { return ((DoubleValue)this[TestRelativeErrorResultName].Value).Value; }
83      private set { ((DoubleValue)this[TestRelativeErrorResultName].Value).Value = value; }
84    }
85
86
87    [StorableConstructor]
88    protected RegressionSolution(bool deserializing) : base(deserializing) { }
89    protected RegressionSolution(RegressionSolution original, Cloner cloner)
90      : base(original, cloner) {
91    }
92    public RegressionSolution(IRegressionModel model, IRegressionProblemData problemData)
93      : base(model, problemData) {
94      Add(new Result(TrainingMeanSquaredErrorResultName, "Mean of squared errors of the model on the training partition", new DoubleValue()));
95      Add(new Result(TestMeanSquaredErrorResultName, "Mean of squared errors of the model on the test partition", new DoubleValue()));
96      Add(new Result(TrainingSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition", new DoubleValue()));
97      Add(new Result(TestSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition", new DoubleValue()));
98      Add(new Result(TrainingRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the training partition", new PercentValue()));
99      Add(new Result(TestRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the test partition", new PercentValue()));
100
101      RecalculateResults();
102    }
103
104    protected override void OnProblemDataChanged(EventArgs e) {
105      base.OnProblemDataChanged(e);
106      RecalculateResults();
107    }
108    protected override void OnModelChanged(EventArgs e) {
109      base.OnModelChanged(e);
110      RecalculateResults();
111    }
112
113    private void RecalculateResults() {
114      double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
115      IEnumerable<double> originalTrainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
116      double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values
117      IEnumerable<double> originalTestValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
118
119      double trainingMSE = OnlineMeanSquaredErrorEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues);
120      double testMSE = OnlineMeanSquaredErrorEvaluator.Calculate(estimatedTestValues, originalTestValues);
121      double trainingR2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues);
122      double testR2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedTestValues, originalTestValues);
123      double trainingRelError = OnlineMeanAbsolutePercentageErrorEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues);
124      double testRelError = OnlineMeanAbsolutePercentageErrorEvaluator.Calculate(estimatedTestValues, originalTestValues);
125
126      TrainingMeanSquaredError = trainingMSE;
127      TestMeanSquaredError = testMSE;
128      TrainingRSquared = trainingR2;
129      TestRSquared = testR2;
130      TrainingRelativeError = trainingRelError;
131      TestRelativeError = testRelError;
132    }
133
134    public virtual IEnumerable<double> EstimatedValues {
135      get {
136        return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
137      }
138    }
139
140    public virtual IEnumerable<double> EstimatedTrainingValues {
141      get {
142        return GetEstimatedValues(ProblemData.TrainingIndizes);
143      }
144    }
145
146    public virtual IEnumerable<double> EstimatedTestValues {
147      get {
148        return GetEstimatedValues(ProblemData.TestIndizes);
149      }
150    }
151
152    public virtual IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
153      return Model.GetEstimatedValues(ProblemData.Dataset, rows);
154    }
155  }
156}
Note: See TracBrowser for help on using the repository browser.