1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
26 | public class OnlineCovarianceEvaluator : IOnlineEvaluator {
|
---|
27 |
|
---|
28 | private double originalMean, estimatedMean, Cn;
|
---|
29 | private int n;
|
---|
30 | public double Covariance {
|
---|
31 | get {
|
---|
32 | if (n < 1)
|
---|
33 | throw new InvalidOperationException("No elements");
|
---|
34 | else
|
---|
35 | return Cn / n;
|
---|
36 | }
|
---|
37 | }
|
---|
38 |
|
---|
39 | public OnlineCovarianceEvaluator() {
|
---|
40 | Reset();
|
---|
41 | }
|
---|
42 |
|
---|
43 | #region IOnlineEvaluator Members
|
---|
44 | public double Value {
|
---|
45 | get { return Covariance; }
|
---|
46 | }
|
---|
47 | public void Reset() {
|
---|
48 | n = 0;
|
---|
49 | Cn = 0.0;
|
---|
50 | originalMean = 0.0;
|
---|
51 | estimatedMean = 0.0;
|
---|
52 | }
|
---|
53 |
|
---|
54 | public void Add(double original, double estimated) {
|
---|
55 | if (double.IsNaN(estimated) || double.IsInfinity(estimated) ||
|
---|
56 | double.IsNaN(original) || double.IsInfinity(original)) {
|
---|
57 | throw new ArgumentException("Covariance is not defined for series containing NaN or infinity elements");
|
---|
58 | } else {
|
---|
59 | n++;
|
---|
60 | // online calculation of tMean
|
---|
61 | originalMean = originalMean + (original - originalMean) / n;
|
---|
62 | double delta = estimated - estimatedMean; // delta = (y - yMean(n-1))
|
---|
63 | estimatedMean = estimatedMean + delta / n;
|
---|
64 |
|
---|
65 | // online calculation of covariance
|
---|
66 | Cn = Cn + delta * (original - originalMean); // C(n) = C(n-1) + (y - yMean(n-1)) (t - tMean(n))
|
---|
67 | }
|
---|
68 | }
|
---|
69 | #endregion
|
---|
70 |
|
---|
71 | public static double Calculate(IEnumerable<double> first, IEnumerable<double> second) {
|
---|
72 | IEnumerator<double> firstEnumerator = first.GetEnumerator();
|
---|
73 | IEnumerator<double> secondEnumerator = second.GetEnumerator();
|
---|
74 | OnlineCovarianceEvaluator covarianceEvaluator = new OnlineCovarianceEvaluator();
|
---|
75 |
|
---|
76 | // always move forward both enumerators (do not use short-circuit evaluation!)
|
---|
77 | while (firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {
|
---|
78 | double estimated = secondEnumerator.Current;
|
---|
79 | double original = firstEnumerator.Current;
|
---|
80 | covarianceEvaluator.Add(original, estimated);
|
---|
81 | }
|
---|
82 |
|
---|
83 | // check if both enumerators are at the end to make sure both enumerations have the same length
|
---|
84 | if (secondEnumerator.MoveNext() || firstEnumerator.MoveNext()) {
|
---|
85 | throw new ArgumentException("Number of elements in first and second enumeration doesn't match.");
|
---|
86 | } else {
|
---|
87 | return covarianceEvaluator.Covariance;
|
---|
88 | }
|
---|
89 | }
|
---|
90 | }
|
---|
91 | }
|
---|