Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis/3.4/OnlineEvaluators/OnlineCovarianceEvaluator.cs @ 5649

Last change on this file since 5649 was 5564, checked in by gkronber, 14 years ago

#1418 fixed bugs in online evaluators introduced with r5559

File size: 3.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24
25namespace HeuristicLab.Problems.DataAnalysis {
26  public class OnlineCovarianceEvaluator : IOnlineEvaluator {
27
28    private double originalMean, estimatedMean, Cn;
29    private int n;
30    public double Covariance {
31      get {
32        if (n < 1)
33          throw new InvalidOperationException("No elements");
34        else
35          return Cn / n;
36      }
37    }
38
39    public OnlineCovarianceEvaluator() {
40      Reset();
41    }
42
43    #region IOnlineEvaluator Members
44    public double Value {
45      get { return Covariance; }
46    }
47    public void Reset() {
48      n = 0;
49      Cn = 0.0;
50      originalMean = 0.0;
51      estimatedMean = 0.0;
52    }
53
54    public void Add(double original, double estimated) {
55      if (double.IsNaN(estimated) || double.IsInfinity(estimated) ||
56          double.IsNaN(original) || double.IsInfinity(original)) {
57        throw new ArgumentException("Covariance is not defined for series containing NaN or infinity elements");
58      } else {
59        n++;
60        // online calculation of tMean
61        originalMean = originalMean + (original - originalMean) / n;
62        double delta = estimated - estimatedMean; // delta = (y - yMean(n-1))
63        estimatedMean = estimatedMean + delta / n;
64
65        // online calculation of covariance
66        Cn = Cn + delta * (original - originalMean); // C(n) = C(n-1) + (y - yMean(n-1)) (t - tMean(n))       
67      }
68    }
69    #endregion
70
71    public static double Calculate(IEnumerable<double> first, IEnumerable<double> second) {
72      IEnumerator<double> firstEnumerator = first.GetEnumerator();
73      IEnumerator<double> secondEnumerator = second.GetEnumerator();
74      OnlineCovarianceEvaluator covarianceEvaluator = new OnlineCovarianceEvaluator();
75
76      // always move forward both enumerators (do not use short-circuit evaluation!)
77      while (firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {
78        double estimated = secondEnumerator.Current;
79        double original = firstEnumerator.Current;
80        covarianceEvaluator.Add(original, estimated);
81      }
82
83      // check if both enumerators are at the end to make sure both enumerations have the same length
84      if (secondEnumerator.MoveNext() || firstEnumerator.MoveNext()) {
85        throw new ArgumentException("Number of elements in first and second enumeration doesn't match.");
86      } else {
87        return covarianceEvaluator.Covariance;
88      }
89    }
90  }
91}
Note: See TracBrowser for help on using the repository browser.