1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 |
|
---|
24 | namespace HeuristicLab.Problems.DataAnalysis.Evaluators {
|
---|
25 | public class OnlineMeanAndVarianceCalculator {
|
---|
26 |
|
---|
27 | private double m_oldM, m_newM, m_oldS, m_newS;
|
---|
28 | private int n;
|
---|
29 |
|
---|
30 | public double Variance {
|
---|
31 | get {
|
---|
32 | return (n > 1) ? m_newS / (n - 1) : 0.0;
|
---|
33 | }
|
---|
34 | }
|
---|
35 |
|
---|
36 | public double PopulationVariance {
|
---|
37 | get {
|
---|
38 | return (n > 0) ? m_newS / n : 0.0;
|
---|
39 | }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public double Mean {
|
---|
43 | get {
|
---|
44 | return (n > 0) ? m_newM : 0.0;
|
---|
45 | }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public int Count {
|
---|
49 | get { return n; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public OnlineMeanAndVarianceCalculator() {
|
---|
53 | Reset();
|
---|
54 | }
|
---|
55 |
|
---|
56 | public void Reset() {
|
---|
57 | n = 0;
|
---|
58 | }
|
---|
59 |
|
---|
60 | public void Add(double x) {
|
---|
61 | if (double.IsNaN(x) || double.IsInfinity(x)) {
|
---|
62 | throw new ArgumentException("Mean and variance are not defined for NaN or infinity elements");
|
---|
63 | } else {
|
---|
64 | n++;
|
---|
65 | // See Knuth TAOCP vol 2, 3rd edition, page 232
|
---|
66 | if (n == 1) {
|
---|
67 | m_oldM = m_newM = x;
|
---|
68 | m_oldS = 0.0;
|
---|
69 | } else {
|
---|
70 | m_newM = m_oldM + (x - m_oldM) / n;
|
---|
71 | m_newS = m_oldS + (x - m_oldM) * (x - m_newM);
|
---|
72 |
|
---|
73 | // set up for next iteration
|
---|
74 | m_oldM = m_newM;
|
---|
75 | m_oldS = m_newS;
|
---|
76 | }
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|
80 | }
|
---|