1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | /// <summary>
|
---|
31 | /// Represents a classification solution that uses a discriminant function and classification thresholds.
|
---|
32 | /// </summary>
|
---|
33 | [StorableClass]
|
---|
34 | [Item("DiscriminantFunctionClassificationSolution", "Represents a classification solution that uses a discriminant function and classification thresholds.")]
|
---|
35 | public class DiscriminantFunctionClassificationSolution : ClassificationSolution, IDiscriminantFunctionClassificationSolution {
|
---|
36 | public new IDiscriminantFunctionClassificationModel Model {
|
---|
37 | get { return (IDiscriminantFunctionClassificationModel)base.Model; }
|
---|
38 | protected set {
|
---|
39 | if (value != null && value != Model) {
|
---|
40 | if (Model != null) {
|
---|
41 | Model.ThresholdsChanged -= new EventHandler(Model_ThresholdsChanged);
|
---|
42 | }
|
---|
43 | value.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged);
|
---|
44 | base.Model = value;
|
---|
45 | }
|
---|
46 | }
|
---|
47 | }
|
---|
48 |
|
---|
49 | [StorableConstructor]
|
---|
50 | protected DiscriminantFunctionClassificationSolution(bool deserializing) : base(deserializing) { }
|
---|
51 | protected DiscriminantFunctionClassificationSolution(DiscriminantFunctionClassificationSolution original, Cloner cloner)
|
---|
52 | : base(original, cloner) {
|
---|
53 | RegisterEventHandler();
|
---|
54 | }
|
---|
55 | public DiscriminantFunctionClassificationSolution(IRegressionModel model, IClassificationProblemData problemData)
|
---|
56 | : this(new DiscriminantFunctionClassificationModel(model), problemData) {
|
---|
57 | }
|
---|
58 | public DiscriminantFunctionClassificationSolution(IDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData)
|
---|
59 | : base(model, problemData) {
|
---|
60 | RegisterEventHandler();
|
---|
61 | SetAccuracyMaximizingThresholds();
|
---|
62 | }
|
---|
63 |
|
---|
64 | [StorableHook(HookType.AfterDeserialization)]
|
---|
65 | private void AfterDeserialization() {
|
---|
66 | RegisterEventHandler();
|
---|
67 | }
|
---|
68 |
|
---|
69 | private void RegisterEventHandler() {
|
---|
70 | Model.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged);
|
---|
71 | }
|
---|
72 | private void Model_ThresholdsChanged(object sender, EventArgs e) {
|
---|
73 | OnModelThresholdsChanged(e);
|
---|
74 | }
|
---|
75 |
|
---|
76 | public void SetAccuracyMaximizingThresholds() {
|
---|
77 | double[] classValues;
|
---|
78 | double[] thresholds;
|
---|
79 | var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
80 | AccuracyMaximizationThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
|
---|
81 |
|
---|
82 | Model.SetThresholdsAndClassValues(thresholds, classValues);
|
---|
83 | }
|
---|
84 |
|
---|
85 | public void SetClassDistibutionCutPointThresholds() {
|
---|
86 | double[] classValues;
|
---|
87 | double[] thresholds;
|
---|
88 | var targetClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
89 | NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds);
|
---|
90 |
|
---|
91 | Model.SetThresholdsAndClassValues(thresholds, classValues);
|
---|
92 | }
|
---|
93 |
|
---|
94 | protected override void OnModelChanged(EventArgs e) {
|
---|
95 | base.OnModelChanged(e);
|
---|
96 | SetAccuracyMaximizingThresholds();
|
---|
97 | }
|
---|
98 |
|
---|
99 | protected override void OnProblemDataChanged(EventArgs e) {
|
---|
100 | base.OnProblemDataChanged(e);
|
---|
101 | SetAccuracyMaximizingThresholds();
|
---|
102 | }
|
---|
103 | protected virtual void OnModelThresholdsChanged(EventArgs e) {
|
---|
104 | RecalculateResults();
|
---|
105 | }
|
---|
106 |
|
---|
107 | public IEnumerable<double> EstimatedValues {
|
---|
108 | get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
109 | }
|
---|
110 |
|
---|
111 | public IEnumerable<double> EstimatedTrainingValues {
|
---|
112 | get { return GetEstimatedValues(ProblemData.TrainingIndizes); }
|
---|
113 | }
|
---|
114 |
|
---|
115 | public IEnumerable<double> EstimatedTestValues {
|
---|
116 | get { return GetEstimatedValues(ProblemData.TestIndizes); }
|
---|
117 | }
|
---|
118 |
|
---|
119 | public IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
120 | return Model.GetEstimatedValues(ProblemData.Dataset, rows);
|
---|
121 | }
|
---|
122 | }
|
---|
123 | }
|
---|