1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using System;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
34 | /// <summary>
|
---|
35 | /// Represents a classification solution that uses a discriminant function and classification thresholds.
|
---|
36 | /// </summary>
|
---|
37 | [StorableClass]
|
---|
38 | [Item("DiscriminantFunctionClassificationSolution", "Represents a classification solution that uses a discriminant function and classification thresholds.")]
|
---|
39 | public class DiscriminantFunctionClassificationSolution : ClassificationSolution, IDiscriminantFunctionClassificationSolution {
|
---|
40 | [StorableConstructor]
|
---|
41 | protected DiscriminantFunctionClassificationSolution(bool deserializing) : base(deserializing) { }
|
---|
42 | protected DiscriminantFunctionClassificationSolution(DiscriminantFunctionClassificationSolution original, Cloner cloner)
|
---|
43 | : base(original, cloner) {
|
---|
44 | }
|
---|
45 | public DiscriminantFunctionClassificationSolution(IRegressionModel model, IClassificationProblemData problemData, IEnumerable<double> classValues, IEnumerable<double> thresholds)
|
---|
46 | : this(new DiscriminantFunctionClassificationModel(model, classValues, thresholds), problemData) {
|
---|
47 | }
|
---|
48 | public DiscriminantFunctionClassificationSolution(IDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData)
|
---|
49 | : base(model, problemData) {
|
---|
50 | Model.ThresholdsChanged += new EventHandler(Model_ThresholdsChanged);
|
---|
51 | }
|
---|
52 |
|
---|
53 | #region IDiscriminantFunctionClassificationSolution Members
|
---|
54 |
|
---|
55 | public new IDiscriminantFunctionClassificationModel Model {
|
---|
56 | get { return (IDiscriminantFunctionClassificationModel)base.Model; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public IEnumerable<double> EstimatedValues {
|
---|
60 | get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public IEnumerable<double> EstimatedTrainingValues {
|
---|
64 | get { return GetEstimatedValues(ProblemData.TrainingIndizes); }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public IEnumerable<double> EstimatedTestValues {
|
---|
68 | get { return GetEstimatedValues(ProblemData.TestIndizes); }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
72 | return Model.GetEstimatedValues(ProblemData.Dataset, rows);
|
---|
73 | }
|
---|
74 |
|
---|
75 | public IEnumerable<double> Thresholds {
|
---|
76 | get {
|
---|
77 | return Model.Thresholds;
|
---|
78 | }
|
---|
79 | set { Model.Thresholds = new List<double>(value); }
|
---|
80 | }
|
---|
81 |
|
---|
82 | public event EventHandler ThresholdsChanged;
|
---|
83 |
|
---|
84 | private void Model_ThresholdsChanged(object sender, EventArgs e) {
|
---|
85 | OnThresholdsChanged(e);
|
---|
86 | }
|
---|
87 |
|
---|
88 | protected virtual void OnThresholdsChanged(EventArgs e) {
|
---|
89 | var listener = ThresholdsChanged;
|
---|
90 | if (listener != null) listener(this, e);
|
---|
91 | }
|
---|
92 | #endregion
|
---|
93 | }
|
---|
94 | }
|
---|