Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis/3.4/ClassificationSolution.cs @ 5723

Last change on this file since 5723 was 5717, checked in by gkronber, 14 years ago

#1418 Implemented interactive simplifier views for symbolic classification and regression.

File size: 4.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Operators;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Optimization;
31using System;
32
33namespace HeuristicLab.Problems.DataAnalysis {
34  /// <summary>
35  /// Abstract base class for classification data analysis solutions
36  /// </summary>
37  [StorableClass]
38  public abstract class ClassificationSolution : DataAnalysisSolution, IClassificationSolution {
39    private const string TrainingAccuracyResultName = "Accuracy (training)";
40    private const string TestAccuracyResultName = "Accuracy (test)";
41
42    public new IClassificationModel Model {
43      get { return (IClassificationModel)base.Model; }
44      protected set { base.Model = value; }
45    }
46
47    public new IClassificationProblemData ProblemData {
48      get { return (IClassificationProblemData)base.ProblemData; }
49      protected set { base.ProblemData = value; }
50    }
51
52    public double TrainingAccuracy {
53      get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
54      private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
55    }
56
57    public double TestAccuracy {
58      get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
59      private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
60    }
61
62    [StorableConstructor]
63    protected ClassificationSolution(bool deserializing) : base(deserializing) { }
64    protected ClassificationSolution(ClassificationSolution original, Cloner cloner)
65      : base(original, cloner) {
66    }
67    public ClassificationSolution(IClassificationModel model, IClassificationProblemData problemData)
68      : base(model, problemData) {
69      Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
70      Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
71      RecalculateResults();
72    }
73
74    protected override void OnProblemDataChanged(EventArgs e) {
75      base.OnProblemDataChanged(e);
76      RecalculateResults();
77    }
78
79    protected override void OnModelChanged(EventArgs e) {
80      base.OnModelChanged(e);
81      RecalculateResults();
82    }
83
84    private void RecalculateResults() {
85      double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
86      IEnumerable<double> originalTrainingClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
87      double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
88      IEnumerable<double> originalTestClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
89
90      double trainingAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues);
91      double testAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTestClassValues, originalTestClassValues);
92
93      TrainingAccuracy = trainingAccuracy;
94      TestAccuracy = testAccuracy;
95    }
96
97    public virtual IEnumerable<double> EstimatedClassValues {
98      get {
99        return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
100      }
101    }
102
103    public virtual IEnumerable<double> EstimatedTrainingClassValues {
104      get {
105        return GetEstimatedClassValues(ProblemData.TrainingIndizes);
106      }
107    }
108
109    public virtual IEnumerable<double> EstimatedTestClassValues {
110      get {
111        return GetEstimatedClassValues(ProblemData.TestIndizes);
112      }
113    }
114
115    public virtual IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
116      return Model.GetEstimatedClassValues(ProblemData.Dataset, rows);
117    }
118  }
119}
Note: See TracBrowser for help on using the repository browser.